
Graph Isomorphism Testing Without Full Automorphism Group

Computation∗

José Luis López-Presa
DIATEL, Universidad Politécnica de Madrid, Spain, jllopez@diatel.upm.es

Antonio Fernández
GSyC, Universidad Rey Juan Carlos, Spain, afernandez@acm.org

May 3, 2004

Abstract

In this paper we present an algorithm for testing the isomorphism of two graphs. The algorithm works
in three steps. First, it builds a sequence of partitions on the vertices of one of the graphs. Then, it looks
for some automorphisms in that graph. Finally, it uses backtracking to try to find another sequence of
partitions for the second graph that is compatible with that for the first graph.

We compare the performance of an implementation of this algorithm with other isomorphism testing
programs. For this purpose we have chosen nauty, that is the fastest program we know of (it works
computing a canonical form of the graphs), and vf2 that uses a completely different approach which
looks useful for certain types of graphs. Several types of graphs have been used for the tests in their
directed and undirected versions. Our program is faster that the other two in some cases, and behaves
more uniformly in all of them.

Keywords: graph isomorphism, automorphism discovery, backtracking algorithm.

1 Introduction

The general graph isomorphism problem has been traditionally faced using mainly two different approaches.
A first approach uses backtracking to find a mapping between the vertices of the graphs by exploring the
full search tree, using heuristics to prune that tree. This approach can be very fast for irregular graphs and
graphs with small automorphism groups. This approach has been used, for example, by Ullmann [13], and
Cordella et al. [1]. However, this kind of algorithms can spend a long time exploring automorphic solutions
(paths in the search tree) that will not lead to a valid match. This is especially serious when the graphs
being tested are not isomorphic (since all possibilities are checked).

The second approach obtains a canonical form for each of the graphs to be checked, and then compares
them for equality. The algorithms in the literature that use this approach, also use backtracking, but they
learn about automorphisms and use this knowledge to prune the search tree. However, a canonical form is not
always easy to construct (efficiently). This technique is used by the fastest general isomorphism programs,
like McKay’s nauty [8] which applies the ideas presented in [6]. Previously, Weisfeiler and Lehman had
discussed in [14] the problem of finding a canonical form of a graph and using a refinement technique to
find stable partitions of the vertices in a graph that has been used by many others. Similar algorithms are
described in [5] and [12].

In this paper we present an algorithm that uses a combination of both techniques to check whether two
given graphs are isomorphic. Like in the first approach, it relies on a backtracking algorithm that tries to
find a mapping between the graphs, but instead of using heuristics to prune the search tree, prior to the
∗Partially supported by the Spanish MCyT under grant TIC2001-1586-C03-01 and the Comunidad de Madrid under grant

07T/0022/2003.

1

search it tries to find some automorphisms in one of the graphs. Then, this automorphisms are used to prune
the search tree. This helps when the graphs have many automorphisms. Unlike the algorithms that use the
second approach above, our algorithm does not try to compute the full automorphism group.

Our algorithm works in three phases. First, it builds a sequence of vertex partitions for one of the
graphs, using modifications of well known techniques (like those presented in [14]). Then, it tries to discover
automorphisms in that graph, without backtracking. Finally, using backtracking, it tries to generate, for the
second graph, a sequence of partitions compatible with the one previously generated for the first graph. If
this is possible, both graphs are isomorphic. If it is not possible, they are not isomorphic.

When the graphs tested have a large automorphism group, like Strongly Regular Graphs or Cubic Sym-
metric Graphs, or graphs based on Fürer gadgets like those described in [4] (and used by Miyazaki in [9]) it
would be extremely hard to find the compatible sequence of partitions for the second graph without knowing
the automorphisms of the graphs. Since determining the whole automorphism group can be costly, our algo-
rithm only tries to find those automorphisms whose knowledge will be useful in the third step and which do
not need backtracking to be found. Then the information obtained about automorphisms in the first graph
can be used during the generation of the second sequence of partitions to prune the search tree induced by
the backtracking algorithm.

We have evaluated the space complexity of the algorithm and we show here that the amount of storage
required is O(n2). Unfortunately we have not been able to bound the time complexity beyond the trivial
bounds. Hence, in order to evaluate the practical performance of our algorithm, we have implemented it.
Then we have compared the performance of this implementation with other isomorphism testing programs.
For this purpose, we have chosen nauty [8, 7], which uses the second approach above and is considered the
fastest isomorphism testing program, and vf2 [11], that uses the first approach above and has been shown
to work faster than nauty for certain types of graphs. Several types of graphs have been used for the tests in
their directed and undirected versions. We have found that our program is faster than the other two in some
cases. Furthermore, for all cases it behaves uniformly, while the other two have specific classes of graphs
that make them to take a large amount of time even for small sizes.

The rest of the paper is organized as follows. In Section 2 we define some basic concepts that will be
used widely throughout the paper. In Section 3 we describe the algorithm in detail. We present an example
of the operation of the algorithm in Section 4, which shows most of its functionality and power. In Section 5
we prove the correctness of the algorithm along with all the assertions made, but not proved, in Section 3.
Section 6 tries to analyze the complexity of the algorithm in time and space. In section 7 we compare the
performance of our implementation with that of the other two using different families of graphs of up to
1000 vertices.

2 Basic Definitions

A directed graph G = (V,R) consists of a finite set V of vertices and a binary relation R, i. e. a subset
R ⊆ V × V 1. The elements of R are called arcs. An arc (u, v) ∈ R is considered to be oriented from u to
v. An undirected graph is a graph whose arc set R is symmetrical, i.e., (u, v) ∈ R iff (v, u) ∈ R. From now
on, we will use the term graph to refer to a directed graph. Undirected graphs are just a particular case of
directed graphs.

Given a graph G = (V,R), R can be represented by an adjacency matrix 2 Adj (G) = A with size |V |×|V |
in the following way:

Aij =

0 if (i, j) /∈ R ∧ (j, i) /∈ R
1 if (i, j) /∈ R ∧ (j, i) ∈ R
2 if (i, j) ∈ R ∧ (j, i) /∈ R
3 if (i, j) ∈ R ∧ (j, i) ∈ R

Given a graph G = (V,R) and its adjacency matrix Adj (G) = A, the degree 3 of a vertex v ∈ V under

1Multigraphs are not considered in this paper.
2Note the difference with the traditional definition of the adjacency matrix where Aij = 1 if (i, j) ∈ R and Aij = 0 if

(i, j) /∈ R.
3Note the difference with the traditional degrees. This is a combination of the in-degree, the out-degree and the number of

neighbors of a vertex.

2

graph G, denoted by Deg(v,G), is the 3-tuple (D3, D2, D1) where Di = |{u ∈ V : Avu = i}| for i ∈ {1, 2, 3}.
Let V1 ⊆ V . The available degree of v in V1 under G, denoted by ADeg(v, V1, G), is the 3-tuple (D3, D2, D1)
where Di = |{u ∈ V1 : Avu = i}| for i ∈ {1, 2, 3}.

Extending the notation for some V1 ⊆ V such that ∀u, v ∈ V1,Deg(u,G) = Deg(v,G) = d, we define
Deg(V1, G) = d. The same extension can be applied to the available degree. Let V2 ⊆ V and V1 ⊆ V such
that ∀u, v ∈ V1,ADeg(u, V2, G) = ADeg(v, V2, G) = d. Then, ADeg(V1, V2, G) = d.

We will say a 3-tuple (D3, D2, D1) ≺ (E3, E2, E1) when the first one precedes the second one in lexico-
graphic order and (D3, D2, D1) � (E3, E2, E1) when the second one precedes the first one in lexicographic
order. This notation will be used to order the degree and the available degree of both vertices and sets.

A partition of a set S is a sequence S = (S1, ..., Sr) of disjoint nonempty subsets of S such that S =⋃r
i=1 Si. The sets Si are called the cells of S.

The symbol ∅ denotes the empty partition and the empty set, and the symbol ◦ denotes the partition
concatenation operator. Let S = (S1, ..., Sr) and S ′ = (S′1, ..., S

′
s) be partitions of two disjoint sets S and S′,

respectively. Then, S ◦ S ′ = (S1, ..., Sr, S
′
1, ..., S

′
s). Clearly, ∅ ◦ S = S = S ◦ ∅ = S.

Let G = (V,R) be a graph. The degree partition of V in G, denoted by DegreePartition(G), is the empty
partition if V = ∅, and, otherwise, it is a partition V = (V1, ..., Vr) of V such that:

1 ∀i ∈ {1, ..., r},∀v, u ∈ Vi,Deg(v,G) = Deg(u,G)
2 ∀i, j ∈ {1, ..., r}, i < j implies Deg(Vi, G) � Deg(Vj , G)

Let G = (V,R) be a graph, v ∈ V , V1 ⊆ V \{v}, and Adj (G) = A. The vertex partition of V1 by v, denoted
PartitionByVertex (V1, v,G), is the empty partition ∅ if V1 = ∅, and, otherwise, a partition (S1, ..., Sr) of V1

such that:
1 ∀i ∈ {1, ..., r},∀w, u ∈ Si, Avw = Avu
2 ∀i, j ∈ {1, ..., r}, i < j implies ∀u ∈ Si,∀w ∈ Sj , Avu > Avw

LetG = (V,R) be a graph, and V1, V2 ⊆ V . The set partition of V1 by V2, denoted PartitionBySet(V1, V2, G),
is a partition (S1, ..., Sr) of V1 such that:

1 ∀i ∈ {1, ..., r},∀v, u ∈ Si,ADeg(v, V2, G) = ADeg(u, V2, G)
2 ∀i, j ∈ {1, ..., r}, i < j implies ADeg(Si, V2, G) � ADeg(Sj , V2, G)

Let G = (V,R) be a graph with Adj(G) = A, and V1, V2 ⊆ V such that ∀u, v ∈ V1,ADeg(u, V2, G) =
ADeg(v, V2, G). Let ADeg(V1, V2, G) = (D3, D2, D1). Then, NumLinks(V1, V2, G) = D3 + D2 + D1, and
HasLinks(V1, V2, G) = (NumLinks(V1, V2, G) > 0).

A permutation π : V −→ V acting on the finite set V is a one-to-one mapping from V onto itself. The
image of an element x ∈ V with respect to the permutation π is denoted by π(x).

Let G = (V,RG) and H = (V,RH) be two graphs with the same vertex set. A permutation π : V −→ V
of V is called an isomorphism of G and H if ∀u, v ∈ V, (v, u) ∈ RG ⇐⇒ (π(v), π(u)) ∈ RH . G and H are
called isomorphic, written G ' H, if there is at least one isomorphism π of them.

Let G = (V,R) be a graph. An automorphism of G is an isomorphism of G and itself.

3 The Algorithm

This section describes the algorithm that tests if two graphs are isomorphic. Algorithm AreIsomorphic,
shown in Figure 1, receives two graphs G and H as parameters and returns TRUE if both graphs are
isomorphic, and FALSE if they are not.

This algorithm tests first if both graphs have the same number of vertices and arcs. It is easy to see
that this is a necessary condition for isomorphism. Then, it generates initial partitions of the vertices of
both graphs based on their degrees; S0 is the degree partition of G and T 0 the degree partition of H. If
these partitions are not compatible (G and H differ in the number of vertices of some degree), the graphs
cannot be isomorphic. Generating the degree partitions and checking for their compatibility is fast and can
simplify the search for an isomorphism between G and H, since vertices in one cell of S0 can only be mapped
to vertices in the corresponding cell of T 0 (they can only be mapped to vertices with their same degree).

3

AreIsomorphic(G,H) : boolean
1 - - let G = (VG, RG) and H = (VH , RH)
2 if (|VG| 6= |VH |) ∨ (|RG| 6= |RH |) then
3 return FALSE
4 else
5 S0 ← DegreePartition(G)
6 T 0 ← DegreePartition(H)
7 if ¬DegreePartitionsAreCompatible(G,H) then
8 return FALSE
9 else
10 GenerateFirstSequenceOfPartitions(G)
11 SearchAutomorphisms(G)
12 return Match(0, G,H)
13 end if
14 end if

Figure 1: Algorithm that tests whether G and H are isomorphic.

Unfortunately, for regular graphs, this DegreePartition has only one cell, which means that each vertex in
one partition (or graph) can be mapped to any one in the other partition (or graph).

Algorithm DegreePartitionsAreCompatible, shown in Figure 2, tests if S0 under graph G and T 0 under
graph H are compatible. It checks whether they have the same number of cells, and whether cells in the
same position in their respective partitions have the same degree and size.

DegreePartitionsAreCompatible(G,H) : boolean
1 if |S0| 6= |T 0| then
2 return FALSE
3 else
4 - - let r = |S0| = |T 0| , S0 = (S0

1 , ..., S
0
r) , T 0 = (T 0

1 , ..., T
0
r)

5 return ∀i ∈ {1, ..., r}, (|S0
i | = |T 0

i |) ∧ (Deg(S0
i , G) = Deg(T 0

i , H))
6 end if

Figure 2: Algorithm that tests whether the degree partitions of G and H are compatible.

If the degree partitions S0 and T 0 are compatible, algorithm GenerateFirstSequenceOfPartitions is used
to generate a sequence of partitions S0, ...,Sll for graph G. Then, considering this sequence, graph G is
searched for automorphisms. This search does not attempt to discover all the automorphisms in G. Instead,
it only tries to find those that will later reduce the search for a sequence of partitions T 1, ..., T ll (equivalent to
the sequence for G) for graph H. Finally, algorithm Match attempts to generate this sequence of partitions
T 1, ..., T ll for graph H. If algorithm Match succeeds, G and H are isomorphic.

3.1 Generation of the Sequence of Partitions for Graph G

Algorithm GenerateFirstSequenceOfPartitions, shown in Figure 3, starts from the degree partition S0 of
graph G and generates successive partitions until it finds a partition Sll such that the vertices in cells with
more than one vertex have no adjacencies with the remaining vertices in that partition. The generation of
each new partition Sl+1 from its previous one Sl is done in the following way:

First, all the cells without links are discarded. This reduces the complexity of the problem reducing the
number of vertices to be handled, without loss of information about adjacencies, since a discarded vertex
has no adjacencies with the remaining vertices in the partition.

Then, among the others:

1. If there are cells of size one, one of them is chosen as the pivot set for that partition and its only vertex
is used to split the other cells (with algorithm RefineByVertex).

4

2. Otherwise, the algorithm looks for a cell that is able to split some cell (maybe itself) in that partition.
If such a cell is found, it is chosen as the pivot set, and it is used to generate Sl+1 (with algorithm
RefineBySet).

3. If no cell meeting the condition of Case 2 has been found, then some cell is chosen as the pivot set,
and a vertex in that cell is used to generate Sl+1 (with algorithm RefineByVertex).

P l stores which of the previous three cases has been met to partition Sl, tl identifies the pivot set used
(Stl is the pivot set for Sl), and pl is the pivot vertex used in cases 1 and 3. The values P l and tl are
necessary to generate the sequence of partitions T 1, ..., T ll for graph H using these same refinements and
the corresponding pivot sets.

We use an attribute Valid of the cells to improve the performance in case 2. This attribute stores whether
a cell is marked as valid or invalid. We mark a cell Sli as invalid if we know that it cannot split any of the
cells in Sl, and it is valid otherwise (if it has not been proved to be invalid). Before a cell is used as the
pivot set for a refinement by set, it is marked invalid in advance, because, if it is not able to split any cell, it
will be invalid, and if it is able to split some cell, once it has been used, it has split all the cells to its best,
and it will never be able to split any of the subcells it has generated (otherwise, it would have split them at
this point). This way, if it dos not split itself with this refinement, it will remain invalid, whilst if it does,
its subcells will be valid, since they are new, and we still do not know if they will be able to split some cell
in future refinements.

GenerateFirstSequenceOfPartitions(G)
1 for each S0

i ∈ S0 do
2 Valid(S0

i)← (|S0| > 1) ∧HasLinks(S0
i , V,G)

3 end for
4 l← 0

5 - - let r = |Sl| , Sl = (Sl1, ..., S
l
r) and V l =

⋃r
i=1 S

l
i

6 while ∃Slj ∈ Sl : (|Slj | > 1) ∧HasLinks(Slj , V
l, G) do

7 tl ← IndexBestPivot(l, G)

8 if |Sltl | = 1 then

9 P l ← VERTEX

10 pl ← any vertex in Sltl
11 RefineByVertex (l, G)
12 else
13 success ← FALSE

14 while Valid(Sltl) ∧ ¬success do

15 Valid(Sltl)← FALSE

16 P l ← GROUP
17 RefineBySet(l, success, G)
18 if ¬success then

19 tl ← IndexBestPivot(l, G)
20 end if
21 end while
22 if ¬success then

23 P l ← UNKNOWN

24 pl ← any vertex in Sltl
25 RefineByVertex (l, G)
26 end if
27 end if
28 l← l + 1
29 end while
30 ll← l

Figure 3: Algorithm that generates the sequence of partitions for graph G.

The task of choosing the pivot set among a set of cells is done by algorithm IndexBestPivot , shown in
Figure 4. This algorithm behaves as follows:

5

• It chooses a cell with only one vertex and which has links, if such a cell exists. This corresponds to
Case 1 above.

• If there is not such a cell, it chooses some valid cell. Algorithm GenerateFirstSequenceOfPartitions
will check whether this cell breaks some cell and, if so, will stick to it as the pivot set (Case 2 above).
Otherwise, it marks the cell as invalid and asks IndexBestPivot for another candidate.

• If there is not such a cell, it chooses some cell in the partition. This happens if we are in Case 3 above.

IndexBestPivot(l, G) : integer

1 - - let r = |Sl| , Sl = (Sl1, ..., S
l
r) and V l =

⋃r
i=1 S

l
i

2 b← 1
3 for i← 2 to r do

4 if Valid(Sli) then

5 if ¬Valid(Slb) ∨ (|Slb| > |Sli|) ∨ ((|Sli| = 1) ∧ (NumLinks(Sli, V
l, G) > NumLinks(Slb, V

l, G))) then
6 b← i
7 else

8 if ¬Valid(Slb) ∧HasLinks(Sli, V
l, G) ∧ (¬HasLinks(Slb, V

l, G) ∨ (|Slb| > |Sli|)) then
9 b← i
10 end if
11 end for
12 return b

Figure 4: Algorithm that finds the best set Sli ∈ Sl to be used as a pivot.

IndexBestPivot uses some heuristics to break ties that, in our experiments, have shown to be efficient. It
first chooses the cell of smallest size, and among cells of the same size, it chooses the cell with the smallest
index. The order in which the cells are chosen as pivots has a deep impact on the ability of the algorithm
to find automorphisms, and therefore, on its performance.

RefineByVertex (l, G)

1 - - let r = |Sl| , Sl = (Sl1, ..., S
l
r) and V l =

⋃r
i=1 S

l
i

2 Sl+1 ← ∅
3 for i← 1 to r do

4 if HasLinks(Sli, V
l, G) then

5 if i = tl then

6 X ← PartitionByVertex (Sli \ {pl}, pl, G)
7 else

8 X ← PartitionByVertex (Sli, p
l, G)

9 end if

10 Sl+1 ← Sl+1 ◦ X
11 for each Sl+1

j ∈ Sl+1 : Sl+1
j ∈ X do

12 Valid(Sl+1
j)← Valid(Sli) ∨ (|X | > 1) ∨ (i = tl)

13 end for
14 end if
15 end for

16 - - let r = |Sl+1| , Sl+1 = (Sl+1
1 , ..., Sl+1

r) and V l+1 =
⋃r
i=1 S

l+1
i

17 for each Sl+1
j ∈ Sl+1 : ¬HasLinks(Sl+1

j , V l+1, G) do

18 Valid(Sl+1
j)← FALSE

19 end for

Figure 5: Algorithm that generates Sl+1 applying vertex partition on Sl.

Algorithm RefineByVertex is shown in Figure 5. It generates a new partition Sl+1 from Sl by applying
PartitionByVertex to every cell with links in the partition. The cells without links are discarded since all

6

their adjacencies have been previously dealt with and all their adjacent vertices have been already discarded
(if there were any). Moreover, all the vertices in a cell without links are equivalent (they are all adjacent to
the same vertices in the same way). The vertex used to compute the partition by vertex is also discarded,
because all its adjacencies are used up at this point. If the vertex refinement is applied with a pivot set with
more than one vertex, any vertex in that set can be chosen as the pivot vertex. This vertex is stored in pl

so it can be used during the search for automorphisms.
The cells in the new partition are valid if they come from a cell in the previous partition which was

already valid, or they are new cells (proper subsets of a cell in the previous partition); being new cells, we
still do not know if they will be able to split any cell or not. Finally, when a cell has lost all its links, it
becomes invalid, since it will not be able to split any cell.

Algorithm RefineBySet is shown in Figure 6. It computes a new partition Sl+1 from Sl by applying
PartitionBySet to all the sets in the partition. As in the case of refinement by vertex, cells without links
are discarded since they are useless. Parameter success tells the caller if the pivot set has been able to split
at least one cell in the partition. Otherwise, it will be necessary to try another pivot set, or another kind
of refinement. The cells in the new partition are marked valid if they come from a valid cell (note that the
pivot cell has already be marked as invalid in algorithm GenerateFirstSequenceOfPartitions and therefore,
if it does not split itself, it will remain invalid in the new partition) or they are new (they come from a cell
that has been split by this refinement).

RefineBySet(l, success, G)

1 - - let r = |Sl| , Sl = (Sl1, ..., S
l
r) and V l =

⋃r
i=1 S

l
i

2 success ← FALSE

3 Sl+1 ← ∅
4 for i← 1 to r do

5 if HasLinks(Sli, V
l, G) then

6 X ← PartitionBySet(Sli, S
l
tl , G)

7 Sl+1 ← Sl+1 ◦ X
8 for each Sl+1

j ∈ Sl+1 : Sl+1
j ∈ X do

9 Valid(Sl+1
j)← Valid(Sli) ∨ (|X | > 1)

10 end for
11 success ← success ∨ (|X | > 1)
12 end if
13 end for

Figure 6: Algorithm that generates Sl+1 applying set partition on Sl.

The sequence of partitions generated by algorithm GenerateFirstSequenceOfPartitions induces an order
on the vertices of the graph. The order of the vertices is defined by the order in which they are discarded by
the algorithm. This happens when a vertex is used as the pivot for a vertex refinement, and when a cell is
discarded for not having links (in this case, the order among the vertices in the cell is irrelevant since they
are equivalent, but the order among cells removed in the same refinement is indeed relevant). Finally, the
vertices in the last partition follow all the previously removed vertices, and their relative order is defined by
their position in this last partition (again, the order among the vertices in a cell is irrelevant). See Section 5
for more details.

3.2 Automorphisms Discovery

After generating the sequence of partitions for graph G, the algorithm searches for automorphisms in G.
The aim of this search is to remove potential backtracking points in the search for the sequence of partitions
for graph H. Backtracking will only be necessary when refinement by vertex is applied with a pivot set that
has more than one vertex. In this case, P l takes value UNKNOWN.

Algorithm SearchAutomorphisms, shown in Figure 7, starts with partition Sll−1 and runs backwards
through the sequence of partitions S0, ...,Sll. When it finds a partition Sl such that P l is UNKNOWN, it
tests if all the vertices in the pivot set are equivalent (for more details, see Section 5). In such a case, P l

7

SearchAutomorphisms(G)
1 for l← ll − 1 downto 0 do

2 if P l = UNKNOWN then
3 if TheVerticesInThePivotSetAreEquivalent(l, G) then

4 P l ← VERTEX
5 else

6 P l ← BACKTR
7 end if
8 end if
9 end for
10 end if

Figure 7: Algorithm that finds some automorphisms in the first graph.

will be changed to VERTEX. This way, during the generation of the sequence of partitions for graph H,
it will be sufficient to try one of the vertices in the pivot set, since, if G and H are isomorphic, then the
vertices in the pivot set must also be equivalent in partition T l for graph H. All this is thoroughly discussed
in Section 5. If not all the vertices in the pivot set are equivalent, backtracking may be necessary when
generating partition T l+1 from partition T l for graph H. In this case, P l is set to BACKTR to indicate this
fact.

Algorithm TheVerticesInThePivotSetAreEquivalent , shown in Figure 8, tests all the vertices in the pivot
set for equivalence with the pivot vertex. If it finds a vertex in the pivot set which is not equivalent to the
pivot vertex, it concludes that not all the vertices in the pivot set are equivalent and returns. Otherwise,
it returns indicating that all of them are equivalent. This is why choosing the right cells as pivot sets is so
crucial for the performance of the algorithm (it is directly related with the amount of possible backtracking
needed by algorithm Match to find the sequence of partitions for graph H). Ideally, only cells with equivalent
vertices should be taken as pivot sets. Algorithm IsEquivalentToThePivotVertex , shown in Figure 9, is used
to test individual vertices for equivalence with the pivot vertex.

TheVerticesInThePivotSetAreEquivalent(l, G) : boolean

1 - - let r = |Sl| and Sl = (Sl1, ..., S
l
r)

2 X ← Sltl \ {p
l}

3 repeat
4 x← any vertex in X
5 X ← X \ {x}
6 success ← IsEquivalentToThePivotVertex (l, x,G)
7 until (X = ∅) ∨ ¬success
8 return success

Figure 8: Algorithm that tests equivalence among the vertices in the pivot group at Partition Sl.

Algorithm IsEquivalentToThePivotVertex tests if vertex x is equivalent to the pivot vertex for partition
W l. To do so, it generates a sequence of partitions W l+1, ...,W ll. This partitions are stored in X (the old
partition) and Y (the new partition) to minimize memory usage. Partition W l+1 is generated by applying
vertex partitioning to Sl, with x as the pivot vertex. If W l+1 and Sl+1 are compatible, partition W l+2

is generated using the partitioning technique P l+1 used to generate partition Sl+2 from Sl+1. If they are
compatible, new partitions are generated in this way and tested for compatibility, until the final partition
W ll is reached or incompatibility is found. If the algorithm finds an incompatibility, it returns FALSE.
Otherwise, the final partitions are tested for equivalence with algorithm FinalPartitionsAreEquivalent . If
they are equivalent (i.e. both partitions are the same), then x and pl are equivalent. Note that in Line 24
of the algorithm of Figure 9 we are assuming that the evaluation of the boolean expression is done from left
to right and only if needed (short circuit evaluation). Hence, FinalPartitionsAreEquivalent will be invoked
only if compatible is TRUE and equivalent is FALSE (and hence m = ll).

If there is an i such that partition Wi and partition Si are the same, then it is not necessary to go on

8

IsEquivalentToThePivotVertex (l, x,G) : boolean

1 X ← Sl
2 ComputePartitionByGivenVertex (l, x,X ,Y, G)
3 compatible ← VertexPartitionIsCompatible(l + 1, G,Y, G)

4 equivalent ← compatible ∧ (Y = Sl+1)
5 m← l + 1
6 while compatible ∧ ¬equivalent ∧ (m < ll) do
7 if Pm = BACKTR then
8 compatible ← FALSE
9 else
10 X ← Y
11 - - let r = |X | and X = (X1, ...,Xr)
12 if Pm = VERTEX then
13 z ← any vertex in Xtl
14 ComputePartitionByGivenVertex (m, z,X ,Y, G)
15 compatible ← VertexPartitionIsCompatible(m+ 1, G,Y, G)
16 else
17 ComputePartitionByPivotSet(m,X ,Y, G)
18 compatible ← SetPartitionIsCompatible(m+ 1, G,Xtl ,Y, G)
19 end if
20 equivalent ← compatible ∧ (Y = Sm+1)
21 end if
22 m← m+ 1
23 end while
24 return compatible ∧ (equivalent ∨ FinalPartitionsAreEquivalent(G,Y, G))

Figure 9: Algorithm that tests equivalence of vertex x with pl.

generating the remaining partitions Wi+1, ...,W ll since they would be the same as Si+1, ...,Sll. In such a
case, they are equivalent, and the algorithm returns immediately.

When checking the equivalence between vertex x and vertex pl, the algorithm may reach a partition
Wi such that P i = VERTEX but |W i

ti | = |Siti | > 1. This is the case when vertex equivalence has been
established previously for the pivot set Siti of partition Si. Then, any vertex in cell W i

ti may be used for the
refinement (to obtain Wi+1) since all of them must be equivalent. See Section 5 for the details.

ComputePartitionByGivenVertex (l, x,X ,Y, I)
1 - - let r = |X | , X = (X1, ...,Xr) and W =

⋃r
i=1 Xi

2 Y ← ∅
3 for i← 1 to r do
4 if HasLinks(Xi,W, I) do

5 if i = tl then
6 Z ← PartitionByVertex (Xi \ {x}, x, I)
7 else
8 Z ← PartitionByVertex (Xi, x, I)
9 end if
10 Y ← Y ◦ Z
11 end if
12 end for

Figure 10: Algorithm that computes a new partition applying vertex partitioning.

Algorithms ComputePartitionByGivenVertex , shown in Figure 10, and ComputePartitionByPivotSet ,
shown in Figure 11, are very similar to RefineByVertex , previously shown in Figure 5, and RefineBySet ,
previously shown in Figure 6, respectively, but simpler, since they do not need to store information for
future use like pl, P l, etc. These algorithms will also be used during the generation of the sequence of

9

ComputePartitionByPivotSet(l,X ,Y, I)
1 - - let r = |X | , X = (X1, ...,Xr) and W =

⋃r
i=1 Xi

2 Y ← ∅
3 for i← 1 to r do
4 if HasLinks(Xi,W, I) do
5 Z ← PartitionBySet(Xi, Xtl , I)
6 Y ← Y ◦ Z
7 end if
8 end for

Figure 11: Algorithm that computes a new partition applying group partitioning.

partitions for graph H. That is why they have a generic graph parameter I.
When a partition X is generated applying vertex partitioning to partition Y, the cells in Y may split

according to the adjacencies of its vertices with the pivot vertex used. Since the pivot vertex is discarded
in X , the available degree of a cell in X is enough to know if its vertices were adjacent to the pivot vertex,
and their type of adjacency. Two partitions are compatible if they have the same number of cells, and their
respective cells have the same available degree. Therefore, if two vertices are equivalent, the partitions they
generate from two compatible partitions must have their respective cells with the same available degree.

VertexPartitionIsCompatible(l, G,X , I) : boolean

1 if |Sl| 6= |X | then
2 return FALSE
3 else

4 - - let r = |Sl| = |X | , Sl = (Sl1, ..., S
l
r) , X = (X1, ...,Xr) , V l =

⋃r
i=1 S

l
i and W =

⋃r
i=1 Xi

5 return ∀i ∈ {1, ..., r}, (|Sli| = |Xi|) ∧ (ADeg(Sli, V
l, G) = ADeg(Xi,W, I))

6 end if

Figure 12: Algorithm that tests compatibility between X under graph I and Sl under graph G after a vertex
refinement.

Algorithm VertexPartitionIsCompatible, shown in Figure 12, tests the compatibility of partition Sl under
graph G with partition X under graph I. After vertex refinement, two partitions are compatible if they have
the same number of cells and the available degrees of the corresponding cells in their respective partitions
are the same.

SetPartitionIsCompatible(l, G,Q,X , I) : boolean

1 if |Sl| 6= |X | then
2 return FALSE
3 else

4 - - let r = |Sl| = |X | , Sl = (Sl1, ..., S
l
r) , X = (X1, ...,Xr) and s = |Sl−1| , Sl−1 = (Sl−1

1 , ..., Sl−1
s)

5 return ∀i ∈ {1, ..., r}, (|Sli| = |Xi|) ∧ (ADeg(Sli, S
l−1

tl−1 , G) = ADeg(Xi, Q, I))

6 end if

Figure 13: Algorithm that tests compatibility between X under graph I and Sl under graph G after a set
refinement.

Algorithm SetPartitionIsCompatible, shown in Figure 13, tests if after applying refinement by set to two
compatible partitions, the new partitions are also compatible. Specifically, it tests if partition Sl under
graph G is compatible with partition X under graph parameter I. After a refinement by set, Sl and X are
compatible if they have the same number of cells and the available degrees of the corresponding cells with
respect to their pivot sets Sl−1

tl−1 (the pivot set used to generate partition Sl from Sl−1) and Q, respectively,
are the same.

Algorithm FinalPartitionsAreEquivalent , shown in Figure 14, tests if partition Sll under graph G is

10

FinalPartitionsAreEquivalent(G,Y, I) : boolean

1 - - let r = |Sll| = |Y| , Sll = (Sll1 , ..., S
ll
r) , V l =

⋃r
i=1 S

ll
i , Y = (Y1, ..., Yr) and W =

⋃r
i=1 Yi

2 - - since ∀i ∈ {1, ..., r} : HasLinks(Slli , V
l, G), |Slli | = |Yi| = 1

3 - - let si be the vertex in Slli and yi the vertex in Yi for all i ∈ {1, ..., r} : HasLinks(Slli , V
l, G)

4 - - let A = Adj(G) and B = Adj(I)

5 return ∀i, j ∈ {1, ..., r} : HasLinks(Slli , V
l, G) ∧HasLinks(Sllj , V

l, G), Asisj = Byiyj

Figure 14: Algorithm that tests if final partitions X ll under graph G and Y under graph H are compatible.

equivalent to partition Y under graph parameter I. Since the final partitions define orders on their vertices,
they will be equivalent if the adjacency between every pair of vertices in partition Sll under graph G and
the adjacency between their corresponding vertices in partition Y under graph parameter I are the same.

3.3 Generation of the Sequence of Partitions for Graph H

Algorithm Match, shown in Figure 15, looks for a sequence of partitions for graph H that is equivalent to
the sequence of partitions previously generated for graph G. Match is a recursive backtracking algorithm
which generates a new partition each time it is run. It processes partition T l, which is compatible with
partition Sl, to generate a new partition T l+1 which is tested for compatibility with partition Sl+1. If they
are compatible, Match calls itself to process the new partition T l+1. If they are not compatible, the sequence
of partitions for graph H we have generated is not valid, and backtracking will be necessary (if possible).
Success is achieved when partition T ll is reached and found to be equivalent to Sll.

To decide which cell should be used as the pivot set, Match uses the information previously recorded
when the sequence of partitions for graph G was generated. Since cell Sltl was used with G, cell T ltl will be
used here for graph H. P l will be used, as well, to choose the partitioning technique to use to generate the
next partition.

The algorithm behaves as follows, depending on the partitioning technique to be applied:

• If the partitioning technique to be applied is VERTEX, a new partition T l+1 is generated applying
algorithm ComputePartitionByGivenVertex taking, as pivot vertex, any vertex in the pivot set. Then,
it is tested for compatibility with partition Sl+1.

– If they are not compatible, then Match returns FALSE.

– If they are compatible and the final partition has been reached, equivalence between the final
partitions needs to be tested. If the final partitions are equivalent, Match returns TRUE, since
an isomorphism has been found. Otherwise, the sequence of partitions is not valid and it returns
FALSE.

– If they are compatible but the final partition has not been reached yet, a recursive call to Match
is necessary to generate and test partitions T l+2, ..., T ll.

• If the partitioning technique to be applied is GROUP a new partition T l+1 is generated using algorithm
ComputePartitionByPivotSet and tested for compatibility with partition Sl+1.

– If they are not compatible, like in the previous case, Match returns FALSE.

– If they are compatible and the final partition has been reached, the final partitions are tested for
equivalence. If they are equivalent, Match returns TRUE, like in the previous case, and otherwise,
it returns FALSE.

– If they are compatible but the final partition has not been reached yet, a recursive call to Match
is necessary, like in the previous case, to generate and test partitions T l+2, ..., T ll.

• If P l is BACKTR, this is a possible point of backtracking. In this case, all the vertices in the pivot
set will be tried as pivot vertex, since any of them could be the one that matches the pivot vertex
chosen for graph G. If no one leads to a valid sequence of partitions, then Match returns FALSE.

11

Match(l, G,H) : boolean

1 - - let r = |T l| and T l = (T l1, ..., T
l
r)

2 Q← T ltl
3 if P l = BACKTR then
4 repeat
5 q ← any vertex in Q
6 Q← Q \ {q}
7 ComputePartitionByGivenVertex (l, q, T l, T l+1, H)

8 if VertexPartitionIsCompatible(l + 1, G, T l+1, H) then
9 if (l + 1) = ll then

10 success ← FinalPartitionsAreEquivalent(G, T ll, H)
11 else
12 success ← Match(l + 1, G,H)
13 end if
14 else
15 success ← FALSE
16 end if
17 until (Q = ∅) ∨ success
18 else

19 if P l = GROUP then

20 ComputePartitionByPivotSet(l, T l, T l+1, H)

21 compatible ← SetPartitionIsCompatible(l + 1, G,Q, T l+1, H)
22 else
23 q ← any vertex in Q

24 ComputePartitionByGivenVertex (l, q, T l, T l+1, H)

25 compatible ← VertexPartitionIsCompatible(l + 1, G, T l+1, H)
26 end if
27 if compatible then
28 if (l + 1) = ll then

29 success ← FinalPartitionsAreEquivalent(G, T ll, H)
30 else
31 success ← Match(l + 1, G,H)
32 end if
33 else
34 success ← FALSE
35 end if
36 end if
37 return success

Figure 15: Algorithm that finds a match from graph H onto G.

For each vertex in the pivot set, it is necessary to compute a new partition applying algorithm
ComputePartitionByGivenVertex with that vertex as the pivot vertex, and test it for compatibility
with Sl+1:

– If they are not compatible, the new partition is discarded.

– If they are compatible and the final partition has been reached, then equivalence between the final
partitions is tested. Match returns TRUE if they are equivalent, and FALSE otherwise.

– If they are equivalent but the final partition has not been reached, Match is called recursively to
generate and test the remaining partitions in this sequence.

4 Example

To show how the algorithm works, we will present an example of its behavior. We will use the graphs G
and H shown in Figure 16. These graphs are a directed version of the Fürer gadgets used by Miyazaki [9] to

12

prove an exponential lower bound for McKay’s program nauty [7]. As it will be seen, our algorithm works
fine with this family of graphs and needs little backtracking. In fact, for these sample graphs it needs no
backtracking whatsoever, as it is shown throughout this section.

tt t

t ttt

t ttt

tt t t

tt
tt
t t

t ttt

t t
t

tt

tt t t

t
tt tt t

........
........
........
........
........
........
........
...
.........

...............

..

...
....................
....

........
................
..

...

........
........
........
........
........
........
........
...
........
................

............................
............................

............................
............................

............................
............................

............................
..................................

...
....................
....

........
................
...

........................

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...............

...
.......................
.

.............
.............

.............
.............

.............
............

.............
.............

.............
.............

.............
.....................
...............

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
................
................

........................

........................

...
.....................
...

...
........................

..
...

.............
.............

.............
.............

.............
............

..
.....................
...

........
................

................

..
....................
....

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
......
.............

.............
.............

.............
.............

.............
.....................
...............

............................
............................

............................
............................

............................
............................

..........

..

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..............
................

...
...

..
...

........
........................

................

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...............

...
.......................
.

.............
.............

.............
.............

.............
............

............................
............................

............................
............................

............................
............................

............................
..................................

.............
.............

.............
.............

.............
.....................
...............
........
........
........
........
........
........
...
........
................

...
....................
....

........................

........................

...
.....................
...

...
........................

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
......
.............

..

..
.....................
...

........
................

............................
............................

............................
............................

............................
............................

............................
..........

........
........
........
........
........
........
........
...
.........

...............

.............
.............

.............
.............

.............
............

.............
.............

.............
.............

.............
.....................
...............

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..............
................

..
...

..
....................
....

........
................

...
....................
....

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
................
................

3

10

7

211

6

12

9
1

5

4

8

15
9

0

1

54

17

1514

12

11

8

7 6

1910

2

3

16

18

13

0

17

14

13

18

19

16

Graph HGraph G

Figure 16: Sample graphs G and H to test isomorphism.

The algorithm needs to generate the data structures described in the previous section. First, it tests
if graphs G = (VG, RG) and H = (VH , RH) have the same number of vertices and arcs. Since |VG| = 20,
|VH | = 20, |RG| = 30 and |RH | = 30, they pass the first test for compatibility and partitions S0 for graph
G and T 0 for graph H are generated.

For graph G, we have:
Deg(4, G) = Deg(5, G) = Deg(12, G) = Deg(13, G) = (0, 3, 0)
Deg(6, G) = Deg(7, G) = Deg(14, G) = Deg(15, G) = (0, 2, 1)
Deg(0, G) = Deg(1, G) = Deg(8, G) = Deg(9, G) = Deg(10, G) =
= Deg(11, G) = Deg(16, G) = Deg(17, G) = Deg(18, G) = Deg(19, G) = (0, 1, 2)
Deg(2, G) = Deg(3, G) = (0, 0, 3)

Then, S0 = (S0
1 , S

0
2 , S

0
3 , S

0
4) where:

S0
1 = {4, 5, 12, 13} with Deg(S0

1 , G) = (0, 3, 0) and |S0
1 | = 4

S0
2 = {6, 7, 14, 15} with Deg(S0

2 , G) = (0, 2, 1) and |S0
2 | = 4

S0
3 = {0, 1, 8, 9, 10, 11, 16, 17, 18, 19} with Deg(S0

3 , G) = (0, 1, 2) and |S0
3 | = 10

S0
4 = {2, 3} with Deg(S0

4 , G) = (0, 0, 3) and |S0
4 | = 2

For graph H, we have:
Deg(4,H) = Deg(7,H) = Deg(12,H) = Deg(14,H) = (0, 3, 0)
Deg(2,H) = Deg(5,H) = Deg(11,H) = Deg(17,H) = (0, 2, 1)
Deg(0,H) = Deg(1,H) = Deg(3,H) = Deg(6,H) = Deg(8,H) =
= Deg(9,H) = Deg(10,H) = Deg(13,H) = Deg(15,H) = Deg(16,H) = (0, 1, 2)
Deg(18,H) = Deg(19,H) = (0, 0, 3)

Then, T 0 = (T 0
1 , T

0
2 , T

0
3 , T

0
4) where:

T 0
1 = {4, 7, 12, 14} with Deg(T 0

1 ,H) = (0, 3, 0) and |T 0
1 | = 4

T 0
2 = {2, 5, 11, 17} with Deg(T 0

2 ,H) = (0, 2, 1) and |T 0
2 | = 4

T 0
3 = {0, 1, 3, 6, 8, 9, 10, 13, 15, 16} with Deg(T 0

3 ,H) = (0, 1, 2) and |T 0
3 | = 10

T 0
4 = {18, 19} with Deg(T 0

4 ,H) = (0, 0, 3) and |T 0
4 | = 2

It is easy to see that partitions S0 and T 0 are compatible, and the vertices in cell T 0
i can only be mapped

to the vertices in cell S0
i for i ∈ {1, 2, 3, 4}. Hence, the sequence of partitions for graph G will be generated

starting with S0.

4.1 Generating the sequence of partitions for graph G

Initially, all the cells in partition S0 are marked Valid . We choose a pivot set with algorithm IndexBestPivot .
Since the smallest valid cell is S0

4 , IndexBestPivot returns 4, which is stored in t0. Then, using S0
4 as the

pivot set, we try to generate a new partition S1 from S0. We start by marking S0
4 as not valid, and setting

P 0 = GROUP, and then, we try RefineBySet . This requires to compute the partitions by set of all the cells
in S0. Since this is an easy task, we assume the reader can easily come to this result:

13

S1 = (S1
1 , S

1
2 , S

1
3 , S

1
4 , S

1
5) where:

S1
1 = {4, 5, 12, 13} with ADeg(S1

1 , S
0
4 , G) = (0, 0, 0) , |S1

1 | = 4 and Valid(S1
1) = TRUE

S1
2 = {6, 7, 14, 15} with ADeg(S1

2 , S
0
4 , G) = (0, 0, 0) , |S1

2 | = 4 and Valid(S1
2) = TRUE

S1
3 = {0, 1, 16, 17, 18, 19} with ADeg(S1

3 , S
0
4 , G) = (0, 1, 0) , |S1

3 | = 6 and Valid(S1
3) = TRUE

S1
4 = {8, 9, 10, 11} with ADeg(S1

4 , S
0
4 , G) = (0, 0, 0) , |S1

5 | = 4 and Valid(S1
4) = TRUE

S1
5 = {2, 3} with ADeg(S1

5 , S
0
4 , G) = (0, 0, 0) , |S1

5 | = 2 and Valid(S1
5) = FALSE

Choosing the pivot set to generate S2, yields t1 = 1, since S1
1 is the smallest valid cell found in left-to-right

order by algorithm IndexBestPivot . We also set P 1 = GROUP and apply RefineBySet to S1 to get:
S2 = (S2

1 , S
2
2 , S

2
3 , S

2
4 , S

2
5 , S

2
6) where:

S2
1 = {4, 5, 12, 13} with ADeg(S2

1 , S
1
1 , G) = (0, 0, 0) , |S2

1 | = 4 and Valid(S2
1) = FALSE

S2
2 = {6, 7, 14, 15} with ADeg(S2

2 , S
1
1 , G) = (0, 0, 1) , |S2

2 | = 4 and Valid(S2
2) = TRUE

S2
3 = {16, 17, 18, 19} with ADeg(S2

3 , S
1
1 , G) = (0, 0, 1) , |S2

3 | = 4 and Valid(S2
3) = TRUE

S2
4 = {0, 1} with ADeg(S2

4 , S
1
1 , G) = (0, 0, 0) , |S2

4 | = 2 and Valid(S2
4) = TRUE

S2
5 = {8, 9, 10, 11} with ADeg(S2

5 , S
1
1 , G) = (0, 0, 1) , |S2

5 | = 4 and Valid(S2
5) = TRUE

S2
6 = {2, 3} with ADeg(S2

6 , S
1
1 , G) = (0, 0, 0) , |S2

6 | = 2 and Valid(S2
6) = FALSE

Cell S2
4 is tried next as pivot set and discarded since it is not capable of splitting any cell in S2. Next,

S2
2 is tried and also discarded, since it is not able to split any cell in S2 either. Finally, we set t2 = 3 and
P 2 = GROUP. After the refinement, we obtain:
S3 = (S3

1 , S
3
2 , S

3
3 , S

3
4 , S

3
5 , S

3
6 , S

3
7 , S

3
8) where:

S3
1 = {12, 13} with ADeg(S3

1 , S
2
3 , G) = (0, 2, 0) , |S3

1 | = 2 and Valid(S3
1) = TRUE

S3
2 = {4, 5} with ADeg(S3

2 , S
2
3 , G) = (0, 0, 0) , |S3

2 | = 2 and Valid(S3
2) = TRUE

S3
3 = {14, 15} with ADeg(S3

3 , S
2
3 , G) = (0, 2, 0) , |S3

3 | = 2 and Valid(S3
3) = TRUE

S3
4 = {6, 7} with ADeg(S3

4 , S
2
3 , G) = (0, 0, 0) , |S3

4 | = 2 and Valid(S3
4) = TRUE

S3
5 = {16, 17, 18, 19} with ADeg(S3

5 , S
2
3 , G) = (0, 0, 0) , |S3

5 | = 4 and Valid(S3
5) = FALSE

S3
6 = {0, 1} with ADeg(S3

6 , S
2
3 , G) = (0, 0, 0) , |S3

6 | = 2 and Valid(S3
6) = FALSE

S3
7 = {8, 9, 10, 11} with ADeg(S3

7 , S
2
3 , G) = (0, 0, 0) , |S3

7 | = 4 and Valid(S3
7) = TRUE

S3
8 = {2, 3} with ADeg(S3

8 , S
2
3 , G) = (0, 0, 2) , |S3

8 | = 2 and Valid(S3
8) = FALSE

Note that, since cell S2
1 has been split into cells S3

1 and S3
2 , these new cells are marked valid, even though

cell S2
1 was not valid. Now, all the valid cells are tried as pivots, discarded, and marked as non-valid, since

none of them is able to split any cell in the partition. In this case, the algorithm chooses the leftmost cell
of the smallest size, S3

1 , as the pivot set to use for vertex refinement, so t3 = 1 and P 3 = UNKNOWN to
indicate that backtracking might be necessary at this point. After a vertex refinement with pivot vertex
p3 = 12, we have:
S4 = (S4

1 , S
4
2 , S

4
3 , S

4
4 , S

4
5 , S

4
6 , S

4
7 , S

4
8 , S

4
9 , S

4
10) where V 4 =

⋃10
i=1 S

4
i and:

S4
1 = {13} with ADeg(S4

1 , V
4, G) = (0, 3, 0) , |S4

1 | = 1 and Valid(S4
1) = TRUE

S4
2 = {4, 5} with ADeg(S4

2 , V
4, G) = (0, 3, 0) , |S4

2 | = 2 and Valid(S4
2) = FALSE

S4
3 = {15} with ADeg(S4

3 , V
4, G) = (0, 2, 0) , |S4

3 | = 1 and Valid(S4
3) = TRUE

S4
4 = {14} with ADeg(S4

4 , V
4, G) = (0, 2, 1) , |S4

4 | = 1 and Valid(S4
4) = TRUE

S4
5 = {6, 7} with ADeg(S4

5 , V
4, G) = (0, 2, 1) , |S4

5 | = 2 and Valid(S4
5) = FALSE

S4
6 = {16, 19} with ADeg(S4

6 , V
4, G) = (0, 1, 1) , |S4

6 | = 2 and Valid(S4
6) = TRUE

S4
7 = {17, 18} with ADeg(S4

7 , V
4, G) = (0, 1, 2) , |S4

7 | = 2 and Valid(S4
7) = TRUE

S4
8 = {0, 1} with ADeg(S4

8 , V
4, G) = (0, 1, 2) , |S4

8 | = 2 and Valid(S4
8) = FALSE

S4
9 = {8, 9, 10, 11} with ADeg(S4

9 , V
4, G) = (0, 1, 2) , |S4

9 | = 4 and Valid(S4
9) = FALSE

S4
10 = {2, 3} with ADeg(S4

10, V
4, G) = (0, 0, 3) , |S4

10| = 2 and Valid(S4
10) = FALSE

Note that vertex 12 is not considered anymore, since it has been used as a pivot vertex, and there-
fore, all its adjacencies have been processed at this point. Now, since there are cells with only one ver-
tex, IndexBestPivot chooses cell S4

1 as the leftmost cell with the largest number of links (computed by
NumLinks(S4

1 , V
4, G)), among the cells with a single vertex. Thus, t4 = 1 and P 4 = VERTEX. After such

refinement, we have:
S5 = (S5

1 , S
5
2 , S

5
3 , S

5
4 , S

5
5 , S

5
6 , S

5
7 , S

5
8 , S

5
9) where V 5 =

⋃9
i=1 S

5
i and:

14

S5
1 = {4, 5} with ADeg(S5

1 , V
5, G) = (0, 3, 0) , |S5

1 | = 2 and Valid(S5
1) = FALSE

S5
2 = {15} with ADeg(S5

2 , V
5, G) = (0, 2, 0) , |S5

2 | = 1 and Valid(S5
2) = TRUE

S5
3 = {14} with ADeg(S5

3 , V
5, G) = (0, 2, 0) , |S5

3 | = 1 and Valid(S5
3) = TRUE

S5
4 = {6, 7} with ADeg(S5

4 , V
5, G) = (0, 2, 1) , |S5

4 | = 2 and Valid(S5
4) = FALSE

S5
5 = {16, 19} with ADeg(S5

5 , V
5, G) = (0, 1, 1) , |S5

5 | = 2 and Valid(S5
5) = TRUE

S5
6 = {17, 18} with ADeg(S5

6 , V
5, G) = (0, 1, 1) , |S5

6 | = 2 and Valid(S5
6) = TRUE

S5
7 = {0, 1} with ADeg(S5

7 , V
5, G) = (0, 1, 2) , |S5

7 | = 2 and Valid(S5
7) = FALSE

S5
8 = {8, 9, 10, 11} with ADeg(S5

8 , V
5, G) = (0, 1, 2) , |S5

8 | = 4 and Valid(S5
8) = FALSE

S5
9 = {2, 3} with ADeg(S5

9 , V
5, G) = (0, 0, 3) , |S5

9 | = 2 and Valid(S5
9) = FALSE

Note that vertex 13 has not been able to split any cell. However, the pivot set has been discarded and
the number of links of cells S5

3 (previously S4
4) and S5

6 (previously S4
7) has been decremented. S5

2 will be
used as the next pivot set, t5 = 2, and vertex refinement, P 5 = VERTEX, will be used to generate S6 which
will be:
S6 = (S6

1 , S
6
2 , S

6
3 , S

6
4 , S

6
5 , S

6
6 , S

6
7 , S

6
8 , S

6
9 , S

6
10) where V 6 =

⋃10
i=1 S

6
i and:

S6
1 = {4, 5} with ADeg(S6

1 , V
6, G) = (0, 3, 0) , |S6

1 | = 2 and Valid(S6
1) = FALSE

S6
2 = {14} with ADeg(S6

2 , V
6, G) = (0, 2, 0) , |S6

2 | = 1 and Valid(S6
2) = TRUE

S6
3 = {6, 7} with ADeg(S6

3 , V
6, G) = (0, 2, 1) , |S6

3 | = 2 and Valid(S6
3) = FALSE

S6
4 = {19} with ADeg(S6

4 , V
6, G) = (0, 1, 0) , |S6

4 | = 1 and Valid(S6
4) = TRUE

S6
5 = {16} with ADeg(S6

5 , V
6, G) = (0, 1, 1) , |S6

5 | = 1 and Valid(S6
5) = TRUE

S6
6 = {17} with ADeg(S6

6 , V
6, G) = (0, 1, 0) , |S6

6 | = 1 and Valid(S6
6) = TRUE

S6
7 = {18} with ADeg(S6

7 , V
6, G) = (0, 1, 1) , |S6

7 | = 1 and Valid(S6
7) = TRUE

S6
8 = {0, 1} with ADeg(S6

8 , V
6, G) = (0, 1, 2) , |S6

8 | = 2 and Valid(S6
8) = FALSE

S6
9 = {8, 9, 10, 11} with ADeg(S6

9 , V
6, G) = (0, 1, 2) , |S6

9 | = 4 and Valid(S6
9) = FALSE

S6
10 = {2, 3} with ADeg(S6

10, V
6, G) = (0, 0, 3) , |S6

10| = 2 and Valid(S6
10) = FALSE

Continuing with the cells with a single vertex, the algorithm chooses S6
2 for the next refinement. It sets

t6 = 2, and P 6 = VERTEX, and generates the new partition S7:
S7 = (S7

1 , S
7
2 , S

7
3 , S

7
4 , S

7
5 , S

7
6 , S

7
7 , S

7
8 , S

7
9) where V 7 =

⋃9
i=1 S

7
i and:

S7
1 = {4, 5} with ADeg(S7

1 , V
7, G) = (0, 3, 0) , |S7

1 | = 2 and Valid(S7
1) = FALSE

S7
2 = {6, 7} with ADeg(S7

2 , V
7, G) = (0, 2, 1) , |S7

2 | = 2 and Valid(S7
2) = FALSE

S7
3 = {19} with ADeg(S7

3 , V
7, G) = (0, 1, 0) , |S7

3 | = 1 and Valid(S7
3) = TRUE

S7
4 = {16} with ADeg(S7

4 , V
7, G) = (0, 1, 0) , |S7

4 | = 1 and Valid(S7
4) = TRUE

S7
5 = {17} with ADeg(S7

5 , V
7, G) = (0, 1, 0) , |S7

5 | = 1 and Valid(S7
5) = TRUE

S7
6 = {18} with ADeg(S7

6 , V
7, G) = (0, 1, 0) , |S7

6 | = 1 and Valid(S7
6) = TRUE

S7
7 = {0, 1} with ADeg(S7

7 , V
7, G) = (0, 1, 2) , |S7

7 | = 2 and Valid(S7
7) = FALSE

S7
8 = {8, 9, 10, 11} with ADeg(S7

8 , V
7, G) = (0, 1, 2) , |S7

8 | = 4 and Valid(S7
8) = FALSE

S7
9 = {2, 3} with ADeg(S7

9 , V
7, G) = (0, 0, 3) , |S7

9 | = 2 and Valid(S7
9) = FALSE

The next cell to be used is S7
3 , so we set t7 = 3 and P 7 = VERTEX. Then, the new partition S8 is

generated. Note that, since cell S7
9 is split, the new cells S8

8 and S8
9 are marked as valid, even though S7

9 was
not valid.
S8 = (S8

1 , S
8
2 , S

8
3 , S

8
4 , S

8
5 , S

8
6 , S

8
7 , S

8
8 , S

8
9) where V 8 =

⋃9
i=1 S

8
i and:

S8
1 = {4, 5} with ADeg(S8

1 , V
8, G) = (0, 3, 0) , |S8

1 | = 2 and Valid(S8
1) = FALSE

S8
2 = {6, 7} with ADeg(S8

2 , V
8, G) = (0, 2, 1) , |S8

2 | = 2 and Valid(S8
2) = FALSE

S8
3 = {16} with ADeg(S8

3 , V
8, G) = (0, 1, 0) , |S8

3 | = 1 and Valid(S8
3) = TRUE

S8
4 = {17} with ADeg(S8

4 , V
8, G) = (0, 1, 0) , |S8

4 | = 1 and Valid(S8
4) = TRUE

S8
5 = {18} with ADeg(S8

5 , V
8, G) = (0, 1, 0) , |S8

5 | = 1 and Valid(S8
5) = TRUE

S8
6 = {0, 1} with ADeg(S8

6 , V
8, G) = (0, 1, 2) , |S8

6 | = 2 and Valid(S8
6) = FALSE

S8
7 = {8, 9, 10, 11} with ADeg(S8

7 , V
8, G) = (0, 1, 2) , |S8

7 | = 4 and Valid(S8
7) = FALSE

S8
8 = {3} with ADeg(S8

8 , V
8, G) = (0, 0, 2) , |S8

8 | = 1 and Valid(S8
8) = TRUE

S8
9 = {2} with ADeg(S8

9 , V
8, G) = (0, 0, 3) , |S8

9 | = 1 and Valid(S8
9) = TRUE

Now, the algorithm selects cell S8
9 as the pivot set, since it is a cell with a single vertex, and, among the

cells with a single vertex, it is the one with the most available links (computed by NumLinks(S8
9 , V

8, G)).
Therefore, we set t8 = 9 and P 8 = VERTEX. Note that in the following partition S9, there are a couple of
cells, S9

3 and S9
4 , which do not have links (their available degree has become (0, 0, 0)), so they are marked as

15

non-valid, and will be discarded in the next refinement. Besides, the new cells split from S8
6 are marked as

valid.
S9 = (S9

1 , S
9
2 , S

9
3 , S

9
4 , S

9
5 , S

9
6 , S

9
7 , S

9
8 , S

9
9) where V 9 =

⋃9
i=1 S

9
i and:

S9
1 = {4, 5} with ADeg(S9

1 , V
9, G) = (0, 3, 0) , |S9

1 | = 2 and Valid(S9
1) = FALSE

S9
2 = {6, 7} with ADeg(S9

2 , V
9, G) = (0, 2, 1) , |S9

2 | = 2 and Valid(S9
2) = FALSE

S9
3 = {16} with ADeg(S9

3 , V
9, G) = (0, 0, 0) , |S9

3 | = 1 and Valid(S9
3) = FALSE

S9
4 = {17} with ADeg(S9

4 , V
9, G) = (0, 0, 0) , |S9

4 | = 1 and Valid(S9
4) = FALSE

S9
5 = {18} with ADeg(S9

5 , V
9, G) = (0, 1, 0) , |S9

5 | = 1 and Valid(S9
5) = TRUE

S9
6 = {0} with ADeg(S9

6 , V
9, G) = (0, 0, 2) , |S9

6 | = 1 and Valid(S9
6) = TRUE

S9
7 = {1} with ADeg(S9

7 , V
9, G) = (0, 1, 2) , |S9

7 | = 1 and Valid(S9
7) = TRUE

S9
8 = {8, 9, 10, 11} with ADeg(S9

8 , V
9, G) = (0, 1, 2) , |S9

7 | = 4 and Valid(S9
7) = FALSE

S9
9 = {3} with ADeg(S9

8 , V
9, G) = (0, 0, 2) , |S9

9 | = 1 and Valid(S9
9) = TRUE

From left-to-right, the smallest cell with most links is S9
7 , since it has three links and size one. Therefore,

we set t9 = 7 and P 9 = VERTEX. Refining by vertex yields:
S10 = (S10

1 , S10
2 , S10

3 , S10
4 , S10

5 , S10
6 , S10

7) where V 10 =
⋃7
i=1 S

10
i and:

S10
1 = {4, 5} with ADeg(S10

1 , V 10, G) = (0, 3, 0) , |S10
1 | = 2 and Valid(S10

1) = FALSE
S10

2 = {6, 7} with ADeg(S10
2 , V 10, G) = (0, 2, 1) , |S10

2 | = 2 and Valid(S10
2) = FALSE

S10
3 = {18} with ADeg(S10

3 , V 10, G) = (0, 1, 0) , |S10
3 | = 1 and Valid(S10

3) = TRUE
S10

4 = {0} with ADeg(S10
4 , V 10, G) = (0, 0, 2) , |S10

4 | = 1 and Valid(S10
4) = TRUE

S10
5 = {10, 11} with ADeg(S10

5 , V 10, G) = (0, 0, 2) , |S10
5 | = 2 and Valid(S10

5) = TRUE
S10

6 = {8, 9} with ADeg(S10
6 , V 10, G) = (0, 1, 2) , |S10

6 | = 2 and Valid(S10
6) = TRUE

S10
7 = {3} with ADeg(S10

7 , V 10, G) = (0, 0, 1) , |S10
7 | = 1 and Valid(S10

7) = TRUE
Note that cells S10

5 and S10
6 are new, and, therefore, marked valid. The best pivot set in partition

S10 is S10
4 since it is the one with most links, among the two with only one vertex. We set t10 = 4 and

P 10 = VERTEX and refine by vertex to obtain the next partition:
S11 = (S11

1 , S11
2 , S11

3 , S11
4 , S11

5 , S11
6) where V 11 =

⋃6
i=1 S

11
i and:

S11
1 = {4, 5} with ADeg(S11

1 , V 11, G) = (0, 3, 0) , |S11
1 | = 2 and Valid(S11

1) = FALSE
S11

2 = {6, 7} with ADeg(S11
2 , V 11, G) = (0, 2, 1) , |S11

2 | = 2 and Valid(S11
2) = FALSE

S11
3 = {18} with ADeg(S11

3 , V 11, G) = (0, 1, 0) , |S11
3 | = 1 and Valid(S11

3) = TRUE
S11

4 = {10, 11} with ADeg(S11
4 , V 11, G) = (0, 0, 2) , |S11

4 | = 2 and Valid(S11
4) = TRUE

S11
5 = {8, 9} with ADeg(S11

5 , V 11, G) = (0, 0, 2) , |S11
5 | = 2 and Valid(S11

5) = TRUE
S11

6 = {3} with ADeg(S11
6 , V 11, G) = (0, 0, 1) , |S11

6 | = 1 and Valid(S11
6) = TRUE

This refinement has not been able to split any cell, but the pivot set has been discarded and the available
degree of one cell has been decremented. That, though slight, is an improvement. Now, S11

3 is chosen and
t11 = 3 and P 11 = VERTEX are set. After the refinement, we have:
S12 = (S12

1 , S12
2 , S12

3 , S12
4 , S12

5) where V 12 =
⋃5
i=1 S

12
i and:

S12
1 = {4, 5} with ADeg(S12

1 , V 12, G) = (0, 3, 0) , |S12
1 | = 2 and Valid(S12

1) = FALSE
S12

2 = {6, 7} with ADeg(S12
2 , V 12, G) = (0, 2, 1) , |S12

2 | = 2 and Valid(S12
2) = FALSE

S12
3 = {10, 11} with ADeg(S12

3 , V 12, G) = (0, 0, 2) , |S12
3 | = 2 and Valid(S12

3) = TRUE
S12

4 = {8, 9} with ADeg(S12
4 , V 12, G) = (0, 0, 2) , |S12

4 | = 2 and Valid(S12
4) = TRUE

S12
5 = {3} with ADeg(S12

5 , V 12, G) = (0, 0, 0) , |S12
5 | = 1 and Valid(S12

5) = FALSE
Since S12

5 has no links, it is marked as non valid. Therefore, the pivot set will be chosen among the valid
cells. These are S12

3 and S12
4 . They are tried for refinement by set, discarded, and marked as non-valid, since

they are not able to split any cell in the partition. Then, S12
1 is used for vertex partitioning with possible

backtracking. Therefore, we set t12 = 1, p12 = 4 and P 12 = UNKNOWN. After the refinement, we get:
S13 = (S13

1 , S13
2 , S13

3 , S13
4 , S13

5 , S13
6 , S13

7) where V 13 =
⋃7
i=1 S

13
i and:

S13
1 = {5} with ADeg(S13

1 , V 13, G) = (0, 3, 0) , |S13
1 | = 1 and Valid(S13

1) = TRUE
S13

2 = {7} with ADeg(S13
2 , V 13, G) = (0, 2, 0) , |S13

2 | = 1 and Valid(S13
2) = TRUE

S13
3 = {6} with ADeg(S13

3 , V 13, G) = (0, 2, 1) , |S13
3 | = 1 and Valid(S13

3) = TRUE
S13

4 = {10} with ADeg(S13
4 , V 13, G) = (0, 0, 1) , |S13

4 | = 1 and Valid(S13
4) = TRUE

S13
5 = {11} with ADeg(S13

5 , V 13, G) = (0, 0, 2) , |S13
5 | = 1 and Valid(S13

5) = TRUE
S13

6 = {8} with ADeg(S13
6 , V 13, G) = (0, 0, 1) , |S13

6 | = 1 and Valid(S13
6) = TRUE

S13
7 = {9} with ADeg(S13

7 , V 13, G) = (0, 0, 2) , |S13
7 | = 1 and Valid(S13

7) = TRUE

16

We have come to a partition where all the cells have only one vertex. Therefore, the generation of the
sequence of partitions has finished and we set ll = 13. Implicitly, we have an order on the vertices in the
graph that, later, may be used to establish a correspondence between the vertices in graph G and the vertices
in graph H.

4.2 Searching for Automorphisms

After the generation of the sequence of partitions for graph G, the algorithm looks for automorphisms. To
do so, it tries to change P l = UNKNOWN for P l = VERTEX proving the equivalence of all the vertices in
Sltl ; if that is not possible, it sets P l = BACKTR. In particular, the two partitions marked UNKNOWN are
S13, which is tested first, and S3, which will be tested next.

Choosing vertex 5 instead of vertex 4 in cell S12
1 and applying a vertex refinement yields a new partition

({4}, {6}, {7}, {11}, {10}, {9}, {8}) such that:
ADeg({4}, {4, 6, 7, 11, 10, 9, 8}, G) = (0, 3, 0) , |{4}| = 1
ADeg({6}, {4, 6, 7, 11, 10, 9, 8}, G) = (0, 2, 0) , |{6}| = 1
ADeg({7}, {4, 6, 7, 11, 10, 9, 8}, G) = (0, 2, 1) , |{7}| = 1
ADeg({11}, {4, 6, 7, 11, 10, 9, 8}, G) = (0, 0, 1) , |{11}| = 1
ADeg({10}, {4, 6, 7, 11, 10, 9, 8}, G) = (0, 0, 2) , |{10}| = 1
ADeg({9}, {4, 6, 7, 11, 10, 9, 8}, G) = (0, 0, 1) , |{9}| = 1
ADeg({8}, {4, 6, 7, 11, 10, 9, 8}, G) = (0, 0, 2) , |{8}| = 1

It is easy to see that it is compatible with partition S13 = ({5}, {7}, {6}, {10}, {11}, {8}, {9}). This is
tested by algorithm VertexPartitionIsCompatible. Finally, their equivalence is established with algorithm
FinalPartitionsAreEquivalent based on their adjacencies, which are graphically shown in Figure 17. This
equivalence of all the vertices in the pivot set lets us set P 12 = VERTEX.

........
................

................

........
................

........
................

........
................

........
................

................

........
................

................

........
................

........
................

........
................

........
................

................

4 6 7 11 8910

Adjacencies in the partition for vertex 5

5 7 6 10 9811

Adjacencies in partition S13

Figure 17: Equivalence of the final partitions for vertices 5 and 4.

Now, we test the equivalence of the vertices in cell S3
1 . Vertex 12 was the one previously used, so now,

vertex 13 will be tested for equivalence. To do so, first, a new partition is generated via vertex refinement,
using 13 as the pivot vertex. This yields:
W4 = (S4

1 , S
4
2 , S

4
3 , S

4
4 , S

4
5 , S

4
6 , S

4
7 , S

4
8 , S

4
9 , S

4
10) where W 4 =

⋃10
i=1W

4
i and:

W 4
1 = {12} with ADeg(W 4

1 ,W
4, G) = (0, 3, 0) , |W 4

1 | = 1
W 4

2 = {4, 5} with ADeg(W 4
2 ,W

4, G) = (0, 3, 0) , |W 4
2 | = 2

W 4
3 = {14} with ADeg(W 4

3 ,W
4, G) = (0, 2, 0) , |W 4

3 | = 1
W 4

4 = {15} with ADeg(W 4
4 ,W

4, G) = (0, 2, 1) , |W 4
4 | = 1

W 4
5 = {6, 7} with ADeg(W 4

5 ,W
4, G) = (0, 2, 1) , |W 4

5 | = 2
W 4

6 = {17, 18} with ADeg(W 4
6 ,W

4, G) = (0, 1, 1) , |W 4
6 | = 2

W 4
7 = {16, 19} with ADeg(W 4

7 ,W
4, G) = (0, 1, 2) , |W 4

7 | = 2
W 4

8 = {0, 1} with ADeg(W 4
8 ,W

4, G) = (0, 1, 2) , |W 4
8 | = 2

W 4
9 = {8, 9, 10, 11} with ADeg(W 4

9 ,W
4, G) = (0, 1, 2) , |W 4

9 | = 4
W 4

10 = {2, 3} with ADeg(W 4
10,W

4, G) = (0, 0, 3) , |W 4
10| = 2

Since they are compatible but not equivalent (they are not the same), a new partition W5 is generated
applying the same refinement that was used to generate S5, with the corresponding pivot set W 4

t4 , that is,
W 4

1 . Thus, we obtain:
W5 = (W 5

1 ,W
5
2 ,W

5
3 ,W

5
4 ,W

5
5 ,W

5
6 ,W

5
7 ,W

5
8 ,W

5
9) where W 5 =

⋃9
i=1W

5
i and:

17

W 5
1 = {4, 5} with ADeg(W 5

1 ,W
5, G) = (0, 3, 0) , |W 5

1 | = 2
W 5

2 = {14} with ADeg(W 5
2 ,W

5, G) = (0, 2, 0) , |W 5
2 | = 1

W 5
3 = {15} with ADeg(W 5

3 ,W
5, G) = (0, 2, 0) , |W 5

3 | = 1
W 5

4 = {6, 7} with ADeg(W 5
4 ,W

5, G) = (0, 2, 1) , |W 5
4 | = 2

W 5
5 = {17, 18} with ADeg(W 5

5 ,W
5, G) = (0, 1, 1) , |W 5

5 | = 2
W 5

6 = {16, 19} with ADeg(W 5
6 ,W

5, G) = (0, 1, 1) , |W 5
6 | = 2

W 5
7 = {0, 1} with ADeg(W 5

7 ,W
5, G) = (0, 1, 2) , |W 5

7 | = 2
W 5

8 = {8, 9, 10, 11} with ADeg(W 5
8 ,W

5, G) = (0, 1, 2) , |W 5
8 | = 4

W 5
9 = {2, 3} with ADeg(W 5

9 ,W
5, G) = (0, 0, 3) , |W 5

9 | = 2
Again, partition W5 is compatible with partition S5, but they are not equivalent. Therefore, we must

go on generating new partitions. According to P 5 and t5, vertex refinement is applied using cell W 5
2 as the

pivot vertex. This yields:
W6 = (W 6

1 ,W
6
2 ,W

6
3 ,W

6
4 ,W

6
5 ,W

6
6 ,W

6
7 ,W

6
8 ,W

6
9 ,W

6
10) where W 6 =

⋃10
i=1W

6
i and:

W 6
1 = {4, 5} with ADeg(W 6

1 ,W
6, G) = (0, 3, 0) , |W 6

1 | = 2
W 6

2 = {15} with ADeg(W 6
2 ,W

6, G) = (0, 2, 0) , |W 6
2 | = 1

W 6
3 = {6, 7} with ADeg(W 6

3 ,W
6, G) = (0, 2, 1) , |W 6

3 | = 2
W 6

4 = {18} with ADeg(W 6
4 ,W

6, G) = (0, 1, 0) , |W 6
4 | = 1

W 6
5 = {17} with ADeg(W 6

5 ,W
6, G) = (0, 1, 1) , |W 6

5 | = 1
W 6

6 = {16} with ADeg(W 6
6 ,W

6, G) = (0, 1, 0) , |W 6
6 | = 1

W 6
7 = {19} with ADeg(W 6

7 ,W
6, G) = (0, 1, 1) , |W 6

7 | = 1
W 6

8 = {0, 1} with ADeg(W 6
8 ,W

6, G) = (0, 1, 2) , |W 6
8 | = 2

W 6
9 = {8, 9, 10, 11} with ADeg(W 6

9 ,W
6, G) = (0, 1, 2) , |W 6

9 | = 4
W 6

10 = {2, 3} with ADeg(W 6
10,W

6, G) = (0, 0, 3) , |W 6
10| = 2

It is easy to see that partitions W6 and S6 are compatible but not equivalent. Since P 6 = VERTEX and
t6 = 2, we apply vertex refinement to W6, with W 6

2 as the pivot vertex. As a result, we get:
W7 = (W 7

1 ,W
7
2 ,W

7
3 ,W

7
4 ,W

7
5 ,W

7
6 ,W

7
7 ,W

7
8 ,W

7
9) where W 7 =

⋃9
i=1W

7
i and:

W 7
1 = {4, 5} with ADeg(W 7

1 ,W
7, G) = (0, 3, 0) , |W 7

1 | = 2
W 7

2 = {6, 7} with ADeg(W 7
2 ,W

7, G) = (0, 2, 1) , |W 7
2 | = 2

W 7
3 = {18} with ADeg(W 7

3 ,W
7, G) = (0, 1, 0) , |W 7

3 | = 1
W 7

4 = {17} with ADeg(W 7
4 ,W

7, G) = (0, 1, 0) , |W 7
4 | = 1

W 7
5 = {16} with ADeg(W 7

5 ,W
7, G) = (0, 1, 0) , |W 7

5 | = 1
W 7

6 = {19} with ADeg(W 7
6 ,W

7, G) = (0, 1, 0) , |W 7
6 | = 1

W 7
7 = {0, 1} with ADeg(W 7

7 ,W
7, G) = (0, 1, 2) , |W 7

7 | = 2
W 7

8 = {8, 9, 10, 11} with ADeg(W 7
8 ,W

7, G) = (0, 1, 2) , |W 7
8 | = 4

W 7
9 = {2, 3} with ADeg(W 7

9 ,W
7, G) = (0, 0, 3) , |W 7

9 | = 2
Partition W7 is compatible with partition S7, so next refinement will be done with W 7

t7 , that is, W 7
3 .

After the corresponding vertex refinement, we have:
W8 = (W 8

1 ,W
8
2 ,W

8
3 ,W

8
4 ,W

8
5 ,W

8
6 ,W

8
7 ,W

8
8 ,W

8
9) where W 8 =

⋃9
i=1W

8
i and:

W 8
1 = {4, 5} with ADeg(W 8

1 ,W
8, G) = (0, 3, 0) , |W 8

1 | = 2
W 8

2 = {6, 7} with ADeg(W 8
2 ,W

8, G) = (0, 2, 1) , |W 8
2 | = 2

W 8
3 = {17} with ADeg(W 8

3 ,W
8, G) = (0, 1, 0) , |W 8

3 | = 1
W 8

4 = {16} with ADeg(W 8
4 ,W

8, G) = (0, 1, 0) , |W 8
4 | = 1

W 8
5 = {19} with ADeg(W 8

5 ,W
8, G) = (0, 1, 0) , |W 8

5 | = 1
W 8

6 = {0, 1} with ADeg(W 8
6 ,W

8, G) = (0, 1, 2) , |W 8
6 | = 2

W 8
7 = {8, 9, 10, 11} with ADeg(W 8

7 ,W
8, G) = (0, 1, 2) , |W 8

7 | = 4
W 8

8 = {3} with ADeg(W 8
8 ,W

8, G) = (0, 0, 2) , |W 8
8 | = 1

W 8
9 = {2} with ADeg(W 8

9 ,W
8, G) = (0, 0, 3) , |W 8

9 | = 1
Partition W8 and partition S8 are also compatible, so another refinement step is performed, with W 8

9 as
the pivot set. This refinement yields:
W9 = (W 9

1 ,W
9
2 ,W

9
3 ,W

9
4 ,W

9
5 ,W

9
6 ,W

9
7 ,W

9
8 ,W

9
9) where W 9 =

⋃9
i=1W

9
i and:

18

W 9
1 = {4, 5} with ADeg(W 9

1 ,W
9, G) = (0, 3, 0) , |W 9

1 | = 2
W 9

2 = {6, 7} with ADeg(W 9
2 ,W

9, G) = (0, 2, 1) , |W 9
2 | = 2

W 9
3 = {17} with ADeg(W 9

3 ,W
9, G) = (0, 0, 0) , |W 9

3 | = 1
W 9

4 = {16} with ADeg(W 9
4 ,W

9, G) = (0, 0, 0) , |W 9
4 | = 1

W 9
5 = {19} with ADeg(W 9

5 ,W
9, G) = (0, 1, 0) , |W 9

5 | = 1
W 9

6 = {0} with ADeg(W 9
6 ,W

9, G) = (0, 0, 2) , |W 9
6 | = 1

W 9
7 = {1} with ADeg(W 9

7 ,W
9, G) = (0, 1, 2) , |W 9

7 | = 1
W 9

8 = {8, 9, 10, 11} with ADeg(W 9
8 ,W

9, G) = (0, 1, 2) , |W 9
7 | = 4

W 9
9 = {3} with ADeg(W 9

8 ,W
9, G) = (0, 0, 2) , |W 9

9 | = 1
Again, W9 is compatible with S9. Therefore, a refinement by vertex is performed using W 9

7 as the pivot
vertex to get the next partition:
W10 = (W 10

1 ,W 10
2 ,W 10

3 ,W 10
4 ,W 10

5 ,W 10
6 ,W 10

7) where W 10 =
⋃7
i=1W

10
i and:

W 10
1 = {4, 5} with ADeg(W 10

1 ,W 10, G) = (0, 3, 0) , |W 10
1 | = 2

W 10
2 = {6, 7} with ADeg(W 10

2 ,W 10, G) = (0, 2, 1) , |W 10
2 | = 2

W 10
3 = {19} with ADeg(W 10

3 ,W 10, G) = (0, 1, 0) , |W 10
3 | = 1

W 10
4 = {0} with ADeg(W 10

4 ,W 10, G) = (0, 0, 2) , |W 10
4 | = 1

W 10
5 = {10, 11} with ADeg(W 10

5 ,W 10, G) = (0, 0, 2) , |W 10
5 | = 2

W 10
6 = {8, 9} with ADeg(W 10

6 ,W 10, G) = (0, 1, 2) , |W 10
6 | = 2

W 10
7 = {3} with ADeg(W 10

7 ,W 10, G) = (0, 0, 1) , |W 10
7 | = 1

Note that cells W 9
3 and W 9

4 have been discarded prior to refinement since they had no links. We have
got a partition W10 which is compatible with S10, so we apply a new refinement. Using cell W 10

4 as the
pivot set, we apply a vertex refinement, and get:
W11 = (W 11

1 ,W 11
2 ,W 11

3 ,W 11
4 ,W 11

5 ,W 11
6) where W 11 =

⋃6
i=1W

11
i and:

W 11
1 = {4, 5} with ADeg(W 11

1 ,W 11, G) = (0, 3, 0) , |W 11
1 | = 2

W 11
2 = {6, 7} with ADeg(W 11

2 ,W 11, G) = (0, 2, 1) , |W 11
2 | = 2

W 11
3 = {19} with ADeg(W 11

3 ,W 11, G) = (0, 1, 0) , |W 11
3 | = 1

W 11
4 = {10, 11} with ADeg(W 11

4 ,W 11, G) = (0, 0, 2) , |W 11
4 | = 2

W 11
5 = {8, 9} with ADeg(W 11

5 ,W 11, G) = (0, 0, 2) , |W 11
5 | = 2

W 11
6 = {3} with ADeg(W 11

6 ,W 11, G) = (0, 0, 1) , |W 11
6 | = 1

Since W11 is compatible with S11, we perform another refinement using W 11
3 as the pivot set (remember

that t11 = 3). After a vertex refinement, we obtain a new partition:
W12 = (W 12

1 ,W 12
2 ,W 12

3 ,W 12
4 ,W 12

5) where W 12 =
⋃5
i=1W

12
i and:

W 12
1 = {4, 5} with ADeg(W 12

1 ,W 12, G) = (0, 3, 0) , |W 12
1 | = 2

W 12
2 = {6, 7} with ADeg(W 12

2 ,W 12, G) = (0, 2, 1) , |W 12
2 | = 2

W 12
3 = {10, 11} with ADeg(W 12

3 ,W 12, G) = (0, 0, 2) , |W 12
3 | = 2

W 12
4 = {8, 9} with ADeg(W 12

4 ,W 12, G) = (0, 0, 2) , |W 12
4 | = 2

W 12
5 = {3} with ADeg(W 12

5 ,W 12, G) = (0, 0, 0) , |W 12
5 | = 1

This partitionW12 is compatible with partition S12. Even more, it is the same partition. Therefore, they
are equivalent, and we can determine the equivalence of vertices 12 and 13 in cell S3

1 without the need of
more refinements. Hence, we set P 3 = VERTEX. Since there is no refinement marked BACKTR, there will
be no backtracking in the next phase of the algorithm (the search for an equivalent sequence of partitions
for graph H).

4.3 Generating the sequence of partitions for graph H

We begin from the partition T 0 built previously. Then, we start generating new partitions applying the
refinement technique used for graph G at each point (according to P l where l ranges from 0 to ll − 1),
with the corresponding pivot set (according to tl for the same values of l). In this way, we obtain the
following sequence of partitions (we do not present the details since it is easy to follow from Figure 16 and
the generation of the sequence of partitions for graph G):

T 1 = ({4, 7, 12, 14}, {2, 5, 11, 17}, {3, 6, 8, 10, 15, 16}, {0, 1, 9, 13}, {18, 19})
T 2 = ({4, 7, 12, 14}, {2, 5, 11, 17}, {6, 8, 15, 16}, {3, 10}, {0, 1, 9, 13}, {18, 19})
T 3 = ({4, 12}, {7, 14}, {2, 11}, {5, 17}, {6, 8, 15, 16}, {3, 10}, {0, 1, 9, 13}, {18, 19})

19

Now, cell {4, 12} is the next pivot set to use for vertex refinement. Since we have discarded this as a point
of possible backtracking, any vertex in the cell may be chosen as the pivot vertex (if graph H is isomorphic
to graph G, vertex equivalence in graph G implies the same equivalence in graph H). For this example, we
will choose vertex 4. Having taken this choice, we can go on generating new partitions:

T 4 = ({12}, {7, 14}, {11}, {2}, {5, 17}, {6, 15}, {8, 16}, {3, 10}, {0, 1, 9, 13}, {18, 19})
T 5 = ({7, 14}, {11}, {2}, {5, 17}, {6, 15}, {8, 16}, {3, 10}, {0, 1, 9, 13}, {18, 19})
T 6 = ({7, 14}, {2}, {5, 17}, {6}, {15}, {16}, {8}, {3, 10}, {0, 1, 9, 13}, {18, 19})
T 7 = ({7, 14}, {5, 17}, {6}, {15}, {16}, {8}, {3, 10}, {0, 1, 9, 13}, {18, 19})
T 8 = ({7, 14}, {5, 17}, {15}, {16}, {8}, {3, 10}, {0, 1, 9, 13}, {19}, {18})
T 9 = ({7, 14}, {5, 17}, {15}, {16}, {8}, {3}, {10}, {0, 1, 9, 13}, {19})
T 10 = ({7, 14}, {5, 17}, {8}, {3}, {1, 9}, {0, 13}, {19})
T 11 = ({7, 14}, {5, 17}, {8}, {1, 9}, {0, 13}, {19})
T 12 = ({7, 14}, {5, 17}, {1, 9}, {0, 13}, {19})

Again, we have a pivot cell with two vertices, but a vertex refinement without the need of backtracking
is performed, with cell {7, 14} as the pivot set. Since we can choose any vertex in the pivot set, vertex 7 will
do. Using it as the pivot vertex, after a vertex refinement, we obtain:

T 13 = ({14}, {5}, {17}, {9}, {1}, {13}, {0})
We have reached the final partition, and now we have to test if this partition is compatible with par-

tition S13. This equivalence is validated by algorithm FinalPartitionsAreEquivalent . Figure 18 shows the
adjacencies between the vertices in partition T 13 from graph H and partition S13 from graph G, where this
equivalence is easily observed. Hence, we can conclude that G and H are isomorphic.

........
................

................

........
................

........
................

........
................

........
................

................

........
................

................

........
................

........
................

........
................

........
................

................

5 7 6 10 9811

Adjacencies in partition S13 from graph G

14 5 17 9 1 13 0

Adjacencies in partition T 13 from graph H

Figure 18: Equivalence of the final partitions T 13 and S13.

The sequences of partitions obtained induce orders on the vertices of G and H that let us establish a
correspondence between the vertices of both graphs. Remember that this orders are not canonical (isomorphic
graphs can lead to different non-automorphic orders). The orders induced by the sequences of partitions
generated are:

G 12 13 15 14 19 2 16 17 1 0 18 3 4 5 7 6 10 11 8 9
H 4 12 11 2 6 18 15 16 10 3 8 19 7 14 5 17 9 1 13 0

This correspondence is not obtained with the algorithm presented, though it could be found with little
effort. However, it is useful to explicitly present it here to verify the isomorphism found by the algorithm.

5 Correctness of the Algorithm

In this section we show that the algorithm in fact correctly determines whether two graphs are isomorphic.
The algorithm presented generates a sequence of partitions for both graphs tested. We first define the
concepts of final partition, sequence of partitions, and compatibility between two sequences of partitions.

Definition 1 Let G = (VG, RG) be a graph. Let S = (S1, ..., Sr) be a partition of V ⊆ VG. Then, S is a
final partition if there is no cell Si ∈ S such that |Si| > 1 and HasLinks(Si, V,G).

Definition 2 Let G = (VG, RG) be a graph. S0, ...,Sll is a sequence of partitions for graph G if:

1. S0 = DegreePartition(G).

2. For each i ∈ {1, ..., ll}, Si is generated from Si−1 using vertex refinement or set refinement as described
in algorithms RefineByVertex (see Figure 5) and RefineBySet (see Figure 6).

20

3. Sll is a final partition.

Definition 3 Two sequences of partitions, S0, ...,Sll for graph G, and T 0, ..., T ll for graph H, are compat-
ible if:

1. S0 and T 0 are compatible according to the criteria used by algorithm DegreePartitionsAreCompatible
(see Figure 2).

2. Partitions Sl+1 and T l+1 are generated from Sl and T l using the same kind of refinement P l and the
same pivot set index tl for all l ∈ {0, ..., ll − 1}.

3. Partitions Sl and T l are compatible according to the corresponding kind of refinement P l−1 and pivot
set used to generate them (VertexPartitionIsCompatible or SetPartitionIsCompatible, Figures 12 and
13, respectively) for all l ∈ {1, ..., ll}.

4. Sll and T ll are equivalent according to algorithm FinalPartitionsAreEquivalent (see Figure 14).

Lemma 1 Let G and H be two isomorphic graphs. Then, there are two compatible sequences of partitions
S0, ...,Sll and T 0, ..., T ll for G and H, respectively.

Proof: Since G and H are isomorphic, there must be (at least) one mapping m from the vertices of G to the
vertices of H that preserves adjacencies. Also, the degree partitions S0 and T 0, for G and H respectively,
must be compatible. Moreover, let r = |S0| = |T 0|, S0 = (S0

1 , ..., S
0
r), and T 0 = (T 0

1 , ..., T
0
r), then, m maps

the vertices in S0
i to the vertices in T 0

i , for each i ∈ {1, ..., r}.
Now, by induction, we assume that compatibility exists up to partitions Sl and T l, and that m maps

the vertices in the ith cell of Sl to the vertices in the ith cell of T l. Then we prove that this also holds for
partitions Sl+1 and T l+1.

Note first that if a cell has been discarded when deriving Sl+1 from Sl, that was because it had no
remaining links. Since the vertices of that cell are mapped by m to the vertices of its corresponding cell in
T l, this last cell can not have links and will also be discarded in T l+1.

Now, partition Sl+1 is generated from Sl under one of the following three different circumstances:

1. The pivot set Sltl in Sl has only one vertex, so vertex refinement is applied.

2. The pivot set Sltl in Sl has more than one vertex and set refinement is applied.

3. The pivot set Sltl in Sl has more than one vertex and vertex refinement is applied.

In Case 1, for graph H, we can generate a new partition T l+1 from T l using vertex refinement with
the pivot set T ltl (which,from the induction hypothesis, contains a single vertex, image under m of the only
vertex in Sltl). Also from the induction hypothesis, the vertices in cell Sli ∈ Sl are mapped under m to the
vertices in cell T li ∈ T l for i ∈ {1, ..., |Sl|}. Hence, if the pivot vertex in Sltl has a certain kind of link with
k vertices in some cell Sli, then the vertex in T ltl must also have a link of that kind with k vertices in cell
T li . Otherwise, there would be vertices in Sli which could not be mapped by m to vertices in T li for having
different adjacencies. Therefore, the new cells generated will have the same number of vertices and their
vertices will have the same kind of adjacency with the respective pivot vertex. Hence, the new partition
generated T l+1 must be compatible with partition Sl+1, and the vertices in cell Sl+1

i ∈ Sl+1 can only be
mapped, under mapping m, to the vertices in T l+1

i ∈ T l+1.
In Case 2, we generate partition T l+1 using set refinement with the corresponding pivot set T ltl . By the

induction hypothesis, cells Sltl and T ltl must have the same adjacencies with the corresponding cells in both
partitions. Therefore, the new cells generated will have the same adjacencies with the pivot set in both
graphs. Hence, the new cells in Sl+1 must be mapped under m to the corresponding new cells in T l+1, and
Sl+1 and T l+1 must be compatible.

In Case 3, the pivot vertex pl chosen from cell Sltl could be mapped to any vertex in T ltl . However, one of
them must be m(pl) since Sltl and T ltl are compatible and the vertices in Sltl can only be mapped to vertices
in T ltl . Using m(pl) as the pivot vertex, we generate a new partition T l+1 compatible with Sl+1 since pl

and m(pl) have the same adjacencies with the same cells. Hence, the new partition generated T l+1 must be

21

compatible with partition Sl+1, and the vertices in cell Sl+1
i ∈ Sl+1 can only be mapped, under mapping m,

to the vertices in T l+1
i ∈ T l+1 for i ∈ {1, ..., |Sl+1|}.

This way, it is possible to generate a sequence of partitions T 0, ..., T ll compatible with S0, ...,Sll up to the
final partitions (those that have no cells with remaining links and more than one vertex). The equivalence
of these partitions is easy to see. Remember that the vertices in one cell in Sll can only be mapped, under
mapping m, to vertices of its corresponding cell in T ll.

A partition of a set of vertices of a graph induces a (partial) order on these vertices. A partition where
every cell is of size one induces a total order on these vertices. Besides, a sequence of partitions induces also
a partial order as follows.

Definition 4 Let S0, ...,Sll be a sequence of partitions for some graph G = (VG, RG). Let V l be the vertices
in partition Sl for all l ∈ {0, ..., ll}. Note that VG = V 0 ⊇ ... ⊇ V ll. The order induced on the vertices of VG
by the sequence of partitions S0, ...,Sll is that which satisfies the following conditions:

• For all l ∈ {0, ..., ll − 1}, vertex v ∈ V l \ V l+1 precedes vertex w ∈ V l+1 (i.e. if v was discarded in an
earlier refinement than w).

• For all l ∈ {0, ..., ll − 1}, if P l = VERTEX, then pl precedes any other vertex v ∈ V l \ V l+1.

• For all l ∈ {0, ..., ll− 1}, let Sl = (Sl1, ..., S
l
r). For all i, j ∈ {1, ..., r} such that Sli and Slj have no links,

let v ∈ Sli and w ∈ Slj. Then, v precedes w if i < j.

• Let Sll = (Sll1 , ..., S
ll
r). Let v ∈ Slli , w ∈ Sllj , i, j ∈ {1, ..., r}. Then, v precedes w if i < j.

Note that there are pairs of vertices that are not ordered with Definition 4. These vertices are inter-
changeable. When referring to the order induced by a partition or a sequence of partitions, we mean any
total order that respects the (partial) order defined.

Let us start analyzing the final partitions Sll and T ll of two sequences of partitions: S0, ...,Sll and
T 0, ..., T ll obtained from graphs G and H respectively. Partitions Sll and T ll induce orders on their ver-
tices, say v1, ..., vk and w1, ..., wk respectively. If these partitions are equivalent according to algorithm
FinalPartitionsAreEquivalent , there is a correspondence between vi and wi for all i ∈ {1, ..., k} that pre-
serves adjacencies.

Observation 1 Let Sll under graph G and T ll under graph H be two final partitions equivalent according
to algorithm FinalPartitionsAreEquivalent. Let v1, ..., vk and w1, ..., wk be the respective induced orders of
their vertices. Mapping m : {v1, ..., vk} −→ {w1, ..., wk} such that m(vi) = wi for all i ∈ {1, ..., k} is an
isomorphism between the subgraphs induced by {v1, ..., vk} on G and {w1, ..., wk} on H. If G and H are the
same graph and {v1, ..., vk} = {w1, ..., wk}, then m is an automorphism.

Let S0, ...,Sll and T 0, ..., T ll be two compatible sequences of partitions for graphs G and H respectively.
Let v1, ..., vn be the order induced by the sequence of partitions S0, ...,Sll on the vertices of graph G. Let
w1, ..., wn be the order induced by the sequence of partitions T 0, ..., T ll on the vertices of graph H. Let m
be the mapping m : {v1, ..., vn} −→ {w1, ..., wn} such that m(vi) = wi, for all i ∈ {1, ..., n}.

Lemma 2 For all k ∈ {1, ..., n}, m is an isomorphism between the subgraphs induced by {vk, ..., vn} on G
and {wk, ..., wn} on H.

Proof: Let vk, ..., vn be the order induced by Sll on its vertices. Let wk, ..., wn be the order induced by T ll
on its vertices. From Observation 1, mapping m is an isomorphism between the subgraphs induced by Sll
on G and T ll on H.

Now, by induction, let vj , ..., vn be the last n − j + 1 vertices in the order induced by the sequence of
partitions S0, ...,Sll on the vertices of graph G, and let wj , ..., wn be the last n− j + 1 vertices in the order
induced by the sequence of partitions T 0, ..., T ll on the vertices of graph H. We assume that m is an isomor-
phism between the subgraphs induced on G and H by {vj , ..., vn} and {wj , ..., wn} respectively and prove
that m is also an isomorphism between the subgraphs induced by {vj−1, vj , ..., vn} and {wj−1, wj , ..., wn} on
G and H respectively. Vertices vj−1 and wj−1 are vertices which where discarded for one of the following
reasons:

22

1. They belonged to cells with no links.

2. They were used as the pivot vertices for a vertex refinement.

In Case 1, the subgraphs induced by {vj−1, vj , ..., vn} and {wj−1, wj , ..., wn} on G and H respectively
are the previous ones with a new disconnected vertex. These new vertices are vj−1 and m(vj−1) = wj−1.
Clearly, m is an isomorphism between the new subgraphs.

In Case 2, since the sequences of partitions are compatible, if there is an adjacency between vj−1 and
any vertex v ∈ {vj−1, vj , ..., vn}, then the same adjacency must exist between wj−1 and m(v). Therefore, m
is an isomorphism between the new subgraphs.

Since we can do this up to vertices v1 and w1, m is an isomorphism for all k ∈ {1, ..., n}.

Corollary 1 Mapping m maps vertices in corresponding cells for all partitions Sl and T l, l ∈ {0, ..., ll}.
I.e., let Sl = (Sl1, ..., S

l
r) and T l = (T l1, ..., T

l
r), then v ∈ Sli implies m(v) ∈ T li , for all i ∈ {1, ..., r}.

Corollary 2 Mapping m is an isomorphism between G and H. If G and H are the same graph, m is an
automorphism.

Proof: This is just the case for k = 1 in Lemma 2.

Corollary 3 Let V l be the vertices in Sl and W l be the vertices in T l for all l ∈ {0, ..., ll}. Then, mapping
m is an isomorphism between the subgraph induced by V l on G and the subgraph induced by W l on H.

Proof: It follows directly from Lemma 2.

Theorem 1 Two graphs G and H are isomorphic if and only if there are two equivalent sequences of
partitions S0, ...,Sll for graph G and T 0, ..., T ll for graph H.

Proof: Immediate from Lemma 1 and Corollary 2.

We say that two vertices of a pivot set used for vertex refinement are equivalent if they generate compatible
sequences of partitions. Algorithm SearchAutomorphisms (see Figure 7) tests for equivalence among the
vertices in the pivot sets of partitions Sl in decreasing order of the index l. If it finds that all the vertices in
the pivot set are equivalent, it changes P l from UNKNOWN to VERTEX, and to BACKTR otherwise.

Let S0, ...,Sll be a sequence of partitions for graph G. Let Sl = (Sl1, ..., S
l
r) be a partition such that, for

all k ∈ {l+1, ..., ll−1}, if Sk has been refined by vertex with a pivot set Sktk with more than one vertex, then
all the vertices in Sktk have been proved to be equivalent (and, hence, P k has been changed from UNKNOWN
to VERTEX). Note that algorithm IsEquivalentToThePivotVertex tries only one vertex in the pivot set Sktk
when P k = VERTEX, no matter the size of the pivot set. The following lemma and its corollary prove that
is enough.

Lemma 3 If using a vertex x ∈ Sltl , x 6= pl, when refining partition Sl, it is possible to generate a sequence
of partitions S0, ...,Sl,W l+1, ...,W ll compatible with S0, ...,Sll, then, for all k ∈ {l + 1, ..., ll − 1} such that
P k = VERTEX and |Sktk | > 1, choosing any vertex in the pivot set W k

tk when refining partitionWk by vertex,
will yield compatible sequences of partitions.

Proof: Let S0, ...,Sl,Sl+1, ...,Sk,Sk+1, ...,Sll be the sequence of partitions generated using vertex pl to
refine partition Sl. Let S0, ...,Sl,W l+1, ...,Wk,Wk+1, ...,W ll be the sequence of partitions generated using
vertex x instead of pl, which is compatible with the previous one. Let P k = VERTEX and |W k

tk | > 1,
such that Wk+1 has been generated using vertex y ∈ W k

tk . By the way of contradiction, let us assume that
there is a vertex z ∈ W k

tk with which it is not possible to generate a sequence of partitions compatible with
S0, ...,Sl,Sl+1, ...,Sk,Sk+1, ...,Sll.

23

Let V be the vertices of Sk and W the vertices of Wk. From Corollary 3, m is an isomorphism between
the subgraphs induced by V and W on G. From Corollary 1, the vertices in each cell of Sk are mapped by
m to the vertices in the corresponding cell of Wk. Then, m−1(z) ∈ Sktk and, since all the vertices in Sktk are
equivalent, using m−1(z) to refine partition Sk yields a sequence of partitions compatible with S0, ...,Sll.
Using the same argument used in the proof of Lemma 1, we can generate a sequence of partitions, compatible
with this one, using vertex z to refine partition Wk. Hence, we have come to a contradiction.

Corollary 4 If using a vertex x ∈ Sltl , x 6= pl, when refining partition Sl, we reach a partition Wk such
that P k = VERTEX and |Sktk | > 1, and using a vertex y ∈W k

tk leads to an incompatibility in the sequence of
partitions being generated, trying another vertex z ∈W k

tk will never yield a compatible sequence of partitions.

Proof: By the way of contradiction, let z ∈ W k
tk be a vertex that, used as the pivot vertex to refine

partition Wk, yields a sequence of partitions compatible with S0, ...,Sll. Then, from Lemma 3, any other
vertex y ∈W k

tk will also yield a compatible sequence of partitions. Hence, we have reached a contradiction.

These results show that, when looking for automorphisms in graph G, the algorithm learns about partial
automorphisms. When it has used some vertex to refine partition Sl by vertex, if P l = VERTEX (no matter
the size of the pivot set), and it gets to a partition which is not equivalent to its corresponding one in
S0, ...,Sll, it knows (from Corollary 4) that trying another vertex will not work either.

Observation 2 If two graphs are isomorphic, then they have the same automorphisms.

Lemma 4 Let S0, ...,Sll and T 0, ..., T ll be two compatible sequences of partitions for two isomorphic graphs
G and H. Then, if there is some l such that P l = VERTEX and |Sltl | > 1 (i.e. all the vertices in that pivot
set are equivalent), then, all the vertices in T ltl will also be equivalent.

Proof: Let v1, ..., vn be the order induced by the sequence of partitions S0, ...,Sll on the vertices of graph
G. Let w1, ..., wn be the order induced by the sequence of partitions T 0, ..., T ll on the vertices of graph H.
Let m be the mapping m : {v1, ..., vn} −→ {w1, ..., wn} such that m(vi) = wi, for all i ∈ {1, ..., n}. From
Corollary 1, m maps the vertices in Sltl to the vertices in T ltl . From Observation 2, since G and H are
isomorphic, they have the same automorphisms. Therefore, if the vertices of cell Sltl are equivalent, their
images under m (the vertices of T ltl) must also be equivalent.

Corollary 5 Let S0, ...,Sll be a sequence of partitions for graph G, such that for some l ∈ {0, ..., ll}, P l =
VERTEX and |Sltl | > 1. If trying to generate a sequence of partitions for graph H compatible with this one,
T 0, ..., T ll, using some vertex x ∈ T ltl we can not satisfy the compatibility, trying another vertex y ∈ T ltl , y 6= x
will not work either.

Proof: By the way of contradiction, let us assume, there exists such a vertex y which yields a sequence of
partitions compatible with S0, ...,Sll. In that case, from Lemma 4, vertex x would also yield and equivalent
sequence of partitions. Therefore, we reach a contradiction.

These results are used by algorithm Match to reduce the amount of backtracking needed to find a sequence
of partitions, for graph H, compatible with that previously generated for graph G. Only one branch in the
search tree is explored if all the vertices of a pivot set are known to be equivalent. This greatly improves the
performance of the algorithm.

Theorem 2 Graphs G and H are isomorphic if and only if AreIsomorphic(G,H) returns TRUE.

Proof: If graphs G and H do not have the same number of vertices and arcs, or their degree partitions are
not compatible, they can not be isomorphic and AreIsomorphic returns FALSE. If their degree partitions
are compatible, a sequence of partitions for graph G is generated and searched for automorphisms. Then,
algorithm Match tries to find a sequence of partitions for graph H compatible with the one generated by
GenerateFirstSequenceOfPartitions for graph G. In this process, four cases arise when refining partition Sl
for l ∈ {0, ..., ll − 1}:

24

1. P l = VERTEX and |Sltl | = 1.

2. P l = GROUP.

3. P l = VERTEX and |Sltl | > 1.

4. P l = BACKTR.

In Case 1, Match uses vertex refinement with the corresponding pivot set, and tests the new partition
T l+1 for compatibility with Sl+1. If they are compatible, it follows that branch in the search tree. This
corresponds to Case 1 in the proof of Lemma 1. If they are not compatible, it backtracks looking for an
unexplored branch in the search tree.

In Case 2, Match applies a set refinement with the corresponding pivot set, testing the new partition for
compatibility, and taking the same actions as in the previous case. This corresponds to Case 2 in the proof
of Lemma 1.

In Case 3, only one vertex in the pivot set needs to be tried, since, in case the choice made does not lead
to a compatible sequence of partitions, from Corollary 5, no other vertex in the pivot set would work. The
actions taken in this case are the same as in the previous cases.

In Case 4, any of the vertices may match the pivot vertex pl. Therefore, every vertex in T ltl is tried. If
none of them matches, then the algorithm backtracks.

This way, algorithm Match, explores every plausible branch. Hence, if it is possible to generate a com-
patible sequence of partitions for graph H, it will find it. If it is not possible to find such a sequence of
partitions, it does not exist and graphs G and H are not isomorphic.

6 Complexity of the algorithm

In this section we will briefly study the space and time complexities of the proposed algorithm.

6.1 Space Complexity

Let us first deal with the space complexity of the algorithm. Note that a space complexity of n3, with n
the number of vertices of the graphs, would make the algorithm unable in practice to deal with graphs of
thousands of vertices, since that would require Gigabytes of storing space. Hence, we have make an effort
to limit the memory space required to kn2, for a small constant k. The most costly memory requirement
comes from the fact that the algorithm needs to store the sequences of partitions for both graphs, and all
their associated information (pivot set index, pivot vertex, refinement technique used, etc.). Each partition
is represented by a data structure that requires O(n) space (in our implementation we use no more than 23n
bytes). We show now that the total number of partitions that have to be stored is at most 2n.

Observe that Algorithm GenerateFirstSequenceOfPartitions stops when it reaches a partition whose cells
with more than one vertex do not have links. Each partition is generated from the previous one using two
kinds of refinement: vertex refinement and set refinement. Let us first consider only vertex refinements. In
this case, the new partition has, at least, one vertex less than the previous one. That means that, in the
worst case, after n−1 vertex refinements, we will get a partition with only one cell and with only one vertex
(the other n− 1 vertices have been discarded). On the other hand, considering only set refinements, in each
refinement at least one cell is split. Hence, after n− 1 set refinements, there will be n cells, all of them with
only one vertex. At this point, the final partition has been reached. Combining both techniques, at most
2(n− 1) refinements are necessary to reach the final partition. Hence, we have that a sequence of partitions
can be stored in O(n2) space.

Note that at most two sequences of partitions have to be maintained simultaneously in memory at any
point in the algorithm. When the sequence of partitions for graph G is generated, that sequence of partitions
has to be stored. When the search for automorphisms is performed, it is necessary to store a second sequence
of partitions: the one being generated and tested for equivalence with the first one. Once when the search
for automorphisms ends, this sequence is discarded. Then, during the search for an equivalent sequence of

25

partitions for graph H, again it is necessary to keep another sequence in memory. Hence, at any time, only
two sequences of partitions are needed and the total memory is still O(n2). Note that this is also the order
of the space required to store each adjacency matrix.

6.2 Time complexity

Let us now consider the time complexity of the different parts of the algorithm. The generation of the degree
partitions is done by ordering the vertices by their degree, with cost O(n log n), and then by generating
the cells in time O(n). The other partitions are generated by refining their previous partition with either
RefineByVertex or RefineBySet . RefineByVertex can be implemented with a cost in time of O(n), being n
the number of vertices in the partition being refined. However, RefineBySet has a much higher cost since, for
each cell in the partition being refined, it is necessary to compute the available degree of each of its vertices
with respect to the pivot set. If a cell has k vertices and the pivot set has p vertices, this process requires
time O(kp) for this cell. Then, it is necessary to order the vertices of each cell (which takes O(k log k) for a
k-vertex cell). Finally, the cells in the new partition have to be generated, which can be done in time O(n).
In the worst case, to generate a new partition it is necessary to try all the cell in the partition as pivot sets
for unsuccessful set refinements, and finally use a vertex refinement. It is easy to see that this whole process
requires at most O(n2) time. Since at most O(n) refinements are necessary, generating the first sequence of
partitions for graph G takes time O(n3).

The search for automorphisms is done generating subsequences of partitions, starting from the one whose
pivot set is being checked for vertex equivalence. The time required for this search depends greatly on the
original sequence of partitions. The worst case would be that all the pivot sets used have to be tested. Hence
at most O(n2) sequences of partitions have to be generated and, as we saw previously, each can take at most
O(n3) time, which yields a (loose) bound of O(n5).

The bounds we have established for the first two steps in the algorithm are clearly polynomial. However,
as far as we know, algorithm Match may take an exponential time since it is a backtracking algorithm and
we have not been able to bound the number of potential backtracking points below Ω(n). Its practical
performance will rely on the ability of the previous steps to reduce the amount of backtracking needed here.

7 Performance comparison

As we said before, we have compared the performance of an implementation of our algorithm, which we will
call conauto, with two other programs: nauty-2.0 [8] and vf2 [11]. In our implementation, we have slightly
modified our algorithm, so that in the automorphisms discovery phase our program does not check the first
potential backtracking point. Testing at this point for equivalence among the vertices in the pivot set may
be very expensive if the pivot set has O(n) vertices, which is the case for vertex-transitive regular graphs.
Moreover, the benefit from knowing that the vertices in this pivot set are equivalent is that algorithm Match
will not backtrack at this point. However, that has the cost of testing every vertex in this pivot set for
equivalence with the pivot vertex previously chosen. Not doing so here leaves this work for Match, that,
probably, will not need so much work to find the equivalent sequence of partitions (if it exists). If these
vertices are equivalent and the graphs are isomorphic, Match will not need to backtrack at this point (any
vertex chosen will work). If the vertices are not equivalent, we do not lose time checking that. In case the
vertices are equivalent but graphs G and H are not isomorphic, no more work will be done by Match than
it would be done by SearchAutomorphisms. Therefore, testing for automorphisms is not performed at this
point. Note that, if instead of comparing only two graphs G and H, we would be comparing G with many
graphs H1, ...,Hk, it would possibly be more convenient to search for equivalence among the vertices in every
pivot set used for vertex refinement with more than one vertex.

The tests have been carried out on a Pentium III at 1.0 GHz with 256 MB of main memory under Linux
RedHat 9.0. All the programs have been compiled with the same compiler and using the same optimizing
options. The execution time considered was the real time (not CPU time) used by the programs once the
graphs had been loaded in memory, thus skipping the overload of accessing a disk file. The CPU time limit
for each program run was set to 1800 seconds. If a test could not finish in that period of time, it was
considered to last 1800 seconds. We know that this may slightly change the results, but since our algorithm

26

.........

...................
........
.........
.....................
.................

..
........
........
.......................................

.............................
........
........
....................................
........
........
...................................

........

...
.....................................

...
...

...
............................

.................
..........................
.........
.................
..........................
.........................
...........................
.........
.................
.........
.................
..........................
.........
.................
..........................
.......................
.........................
.............

.................
.........................
...........................
........................
...........

.................
.........

.................
......................

..............................

..........................
.........

.........

.................
.........

.................
.........

.................
..........................
.........
.................
.........
.................
..........................
.........

.................
.........
.................
.........

.........
.........

.........
.................
.........

.................
.........

.........
.........

.........
.........

.........
.................
.........

.........

.................
.........

.

......

..

..
........

...
...
....
...
..
........

..
.......

..

..

..

..

..

..

...................
..
..
..
..
..
..
...............
...
.......

..
..

..........
..
..
.......

........
..
...........

..
..
..
.........

.........
.........
..........
.........
.........
..............
..................
.............
..................
........
.........................
......................
.......................
........
.............................
...........................
...................
...................
...

.........
........
......................................
...............................

.....................
..........................
..

......................
............................

........
...

...
...

...
..

..........

.................
.......................
.............................
........................
..........................
............................
..........................
.........
.................
..........................
..........................
..........................
..........................
.........
.................
..........................
..........................
..........................
..........................
.......................
.............................
..........................
.......................
.............................
........................
...........
.................
.........
.................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
........................
............................
..........................
..........................
.......................
.............................
..........................
..........................
..........................
.........
.................
..........................
..........................
..........................
..........................
......................
..............................
..........................
..........................
..........................
..........................
........................
............................
..........................
..........................
..........................
..........................
........................
............................
..........................
..........................
..........................
.......................
.............................
..........................
..........................
......................
..............................
..........................
..........................
..........................
..........................
..........................
......................
.............

.................
.........

.................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
........................
............................
..........................
..........................
.........
.................
.........
.................
..........................
..........................
..........................
..........................
..........................
.........................
...........................
..........................
..........................
..........................
.........................
...........................
..........................
..........................
..........................
........................
............................
.........
.................
..........................
.........
.................
..........................
..........................
.........................
...........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
........................
............................
..........................
..........................
.........

..........................
..........................
..........................
.........
.................
.........
.................
..........................
.........

.................
.........

.
....
.....
.......
......
....
......
......
........
.......
..
.....
......
..
.....
......
.......
.........
......
..
.......
..
...
......
.....
..
......
..
........
..
...
.......
..
......
...
.........
..
..
.......
......
..
......
..
........
..
..
.........
..
........
..
........
..
........
..
..
.........
..
........
..
......
..
..
..........
..
..
.............

..
.......

..

..

..

............
..
..
.......

..
.......
..
..
.........

..
.......

..

..

..

...........
..
..
.......

.......

.........
..........
...........
.............
................

...................
........................

.................................
..

..
..

...

.................
.........
.................
.........
.................
.......................
...........................
............................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
.........

.................
.........

.

..

..

..

..

..

..

.

.......
.......
.......
.......
.......
.......
.........
...
.........
...
.......
.......
.......
.......
.........
....
.......
.......
..........
........
..

..

..

..
..
..

..
..

..

..
.. ..

..

.........
.........
..........
...........
.............
...............

................
.......................

......................
............................

....................................
...

..
...

..........................
.........

.................
.........
.................
.........
.................
......................

............................
..........................
............................
.........................
...........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
..........................
.........

.................
.........

.
..
...
...
..
..
...
...

....
......

....
..
..
.. ...

..
.. ..

..
..

.......

.......
.......
........
.......
..............

.........
...
.......
.......
........
.......
.........
.....
.........
.........
...

..

..

.. ..
..

..
..

..
..
..
..

..

..........
..............
...............

........................
............................

...................................
...

...
..

............

.................
.........
.................
........................
...........................
...........................
.........

.................
.........

.................
.........

.................
.........

.........
.........

.................
.........

.
....

.....
... . . .

.
..

.
.

.......
.......
..........
........
............

.
..............

.......
...

....
.......

......
...

..
..
.. ..

..
..

..
..

.. ..

..
..........
..............
...................

.......................
.............................

................................
...

...
..

..................................

.................
.........
.................
.......................
.............................
..........................
.........

.................
.........

.................
.........

.................
.........

.........
.........

.................
.........

.
....

.....
... . . .

.
.

..
.

.......
.......
.........
.........
............

.......
.......... .

......
..

..
.......

....
.......

..
..
.. ..

..
..

..
..

.. ..

..

........
........
..........
...........
............
................

.................
.......................

...............................
...............................

..
..

..
.....

.................
.........
.................
.........
.................
........................
...........................
..........

.................
.........

.................
.........

.................
.........

.................
.........

.................
.........

.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

.......
.......
.......
.................

....
..............

.......
.............

..............
..........

..
..
.... ..

..
..

..
.........
.........
...........
...........
.............
..................

.................
............................

.................................
..

...
...

...

.................
.........
.................
.........
.................
........................
...........................
..........

.................
.........

.................
.........

.................
.........

.................
.........

.................
.........

.
...
....

...
...

....
.....

..... .
.

..
.

.

.......
.......
........
.............

..........
....... ...

...........
.......

.......
..............

.......
.......

........
.......

.......
.......

..
..

....
..

..

..

..
..

..

1e-05

0.0001

0.001

0.01

0.1

1

10

100

0 200 400 600 800 1000
Vertices

conauto
nauty

1e-05

0.0001

0.001

0.01

0.1

1

10

100

0 200 400 600 800 1000
Vertices

conauto
nauty

Seconds SecondsNon Vertex Transitive SRGs Vertex Transitive SRGs

1e-05

0.0001

0.001

0.01

0.1

1

10

100

0 200 400 600 800 1000
Vertices

Directed Fürer Gadgets

conauto
nauty

vf2
1e-05

0.0001

0.001

0.01

0.1

1

10

100

0 200 400 600 800 1000
Vertices

Undirected Fürer Gadgets

conauto
nauty

vf2

Seconds Seconds

1e-05

0.0001

0.001

0.01

0.1

1

10

100

0 200 400 600 800 1000
Vertices

Undirected RCGs η = 0.1

conauto
nauty

vf2

Seconds

1e-05

0.0001

0.001

0.01

0.1

1

10

100

0 200 400 600 800 1000
Vertices

Directed RCGs η = 0.1

conauto
nauty

vf2

Seconds

1e-05

0.0001

0.001

0.01

0.1

1

10

100

0 200 400 600 800 1000
Vertices

Directed Regular 2D Meshes

conauto
nauty

vf2

Seconds

1e-05

0.0001

0.001

0.01

0.1

1

10

100

0 200 400 600 800 1000
Vertices

Undirected Regular 2D Meshes

conauto
nauty

vf2

Seconds

Figure 19: The performance of the three algorithms.

27

never reached 1800 seconds, it only overestimated the performance of the other two algorithms. For each
type and size of the graphs considered, several different graphs or permutations of the same graph were tried
and their average execution time computed.

We have restricted the tests, whose results are shown in Figure 19, to positive cases. Negative cases are
usually more difficult for algorithms that rely on backtracking for finding the correspondence between the
vertices of the graphs, while it is not important for algorithms that build a canonical form of the graphs.
The study of negative cases has been left for future work due to the difficulty of generating hard negative
cases. For our tests, we have chosen four types of graphs:

• Randomly connected graphs with η = 0.1 (RCGs) in directed and undirected versions. The directed
version of these graphs has been developed by Foggia et al.[2] and has been obtained from [11]. The
undirected version has been derived from this graphs, converting arcs into edges.

• 2D Meshes, in directed and undirected versions. The directed version is due also to Foggia et al. [2] and
the undirected version has been derived directly from the directed version as in the case of randomly
connected graphs.

• Strongly Regular Graphs (SRGs), classified in two categories: vertex transitive and not vertex transi-
tive. These graphs were supplied by Sven Reichard and many of them are available at [10].

• Fürer gadgets, in directed and undirected versions. These graphs have been generated with a program
by Takunari Miyazaki, slightly modified to generate both the directed and the undirected versions in
the same format used in [2].

First, we must note that, for random graphs, the three programs have a good behavior. These are simple
graphs and they are supposed to have probably no automorphisms. However, nauty and conauto are rather
faster than vf2, which suggests that vertex classification and partition refinement are very helpful with this
kind of graphs.

With regular 2D meshes, both conauto and vf2 have similar behaviors, though conauto performs more
uniformly for the directed and the undirected versions. nauty, though, has a very bad behavior with the
directed version of the graphs, which was already known [3]. With the undirected versions its performance
si similar to that of the other two algorithms. nauty seems to have problems to gather automorphisms of
directed graphs or to take advantage of directed edges (arcs) in the process of partition refinement.

Strongly Regular Graphs (SRGs) have been split into two groups: vertex-transitive and non vertex-
transitive. The automorphism group of a vertex-transitive graph is easier to compute and that seems to be
the reason why nauty is faster for vertex-transitive SRGs than for non vertex-transitive ones. However, for
these positive tests, conauto performs better for non vertex-transitive graphs. This is due to the fact that
it does not compute the full automorphism group of the graphs. The curves also show that SRGs are an
heterogeneous family of graphs. vf2 has not been included in the SRGs curves for its very erratic behavior
with these graphs. Note that conauto has a quite regular behavior in both cases.

Regarding Fürer gadgets, both in the directed and undirected versions, conauto behaves quite regularly,
and noticeably better than the other two programs. In fact, it looks like the conauto behavior is polynomial,
while that of the other two is exponential. Again, nauty behaves especially bad with the directed version
of the graphs (it could not finish in 1800 seconds for the graphs of 40 vertices). This seems to be due to
the difficulty it experiments to find the automorphisms of this family of graphs. However, the order in
which conauto choses its pivot sets and the method it uses to look for automorphisms makes these graphs
easily manageable. For each size, 20 permutations of the same graph were considered, and, while conauto
performed quite uniformly with all the combinations, the other two found some permutations much harder
than the others.

8 Final considerations

Our algorithm seems to work reasonably well with the graphs we have tried. However, it does not exploit yet
all the power of automorphism discovery to prune the search tree. We believe that with a more sophisticated
technique, it could detect more automorphisms, which would allow it to manage graphs with a regular

28

structure more efficiently. Some of the results presented in [6] could also be applied to our algorithm with
little effort. The hardest graphs to deal with seem to be those regular but not vertex-transitive. For these
graphs, a more sophisticated partitioning technique could help to distinguishing non equivalent vertices, thus
helping to determine the orbits of the graphs.

References

[1] L.P. Cordella, P. Foggia, C. Sansone, and M. Vento. An improved algorithm for matching large graphs.
In Proceedings of the 3rd IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition,
Ischia (Italy), May 2001.

[2] P. Foggia, C. Sansone, and M.Vento. A database of graphs for isomorphism and sub-graph isomorphism
benchmarkin. In Proceedings of the 3rd IAPR-TC15 Workshop on Graph-based Representationsin Pat-
tern Recognition, Ischia (Italy), May 2001.

[3] P. Foggia, C. Sansone, and M. Vento. A performance comparison of five algorithms for graph iso-
morphism. In Proceedings of the 3rd IAPR-TC15 Workshop on Graph-based Representationsin Pattern
Recognition, Ischia (Italy), May 2001.

[4] Martin Fürer. A counterexample in graph isomorphism testing. Tech. Rep. CS-87-36, Department of
Computer Science, The Pennsylvania State University, University Park, Penna., 1987.

[5] Donald L. Kreher and Douglas R. Stinson. Combinatorial Algorithms: Generation, enumeration and
search. CRC Press, 1999.

[6] Brendan D. McKay. Practical graph isomorphism. Congressus Numerantium, 30:45–87, 1981.

[7] Brendan D. McKay. nauty user’s guide (version 1.5). Technical report, Computer Science Department,
Australian National University, 1990.

[8] Brendan D. McKay. The nauty page, March 2004. http://cs.anu.edu.au/~bdm/nauty/.

[9] Takunari Miyazaki. The complexity of McKay’s canonical labelling algorithm. Groups and Computation
II, 28, 1996.

[10] Sven Reichard. Strongly regular graphs, May 2000. http://www.math.udel.edu/~reichard/srg_new/
index.html.

[11] SIVALab. The graph database, May 2003. http://amalfi.dis.unina.it/graph.

[12] G. Tinhofer and M. Klin. Algebraic combinatorics in mathematical chemistry iii. graph invariants and
stabilization methods, 1999.

[13] J. R. Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM, 23(1):31–42, January
1976.

[14] B. Weisfeiler, editor. On Construction and Identification of Graphs, volume 558 of Lecture Notes in
Math. Springer, Berlin, 1976.

29

